Der Blitz / The Lightning

Der Blitz / The Lightning

Ein Blitz ist in der Natur eine Funkenentladung oder ein kurzzeitiger Lichtbogen zwischen Wolken oder zwischen Wolken und der Erde. In aller Regel tritt ein Blitz während eines Gewitters infolge einer elektrostatischen Aufladung der wolkenbildenden Wassertröpfchen oder der Regentropfen auf. Er wird dabei vom Donner begleitet und gehört zu den Elektrometeoren. Dabei werden elektrische Ladungen (Elektronen oder Gas-Ionen) ausgetauscht, d. h. es fließen elektrische Ströme. Blitze können auch, je nach Polarität der elektrostatischen Aufladung, von der Erde ausgehen.

Künstlich im Labor mit Hochspannungsimpulsen erzeugte Blitze dienen deren Studium oder der Überprüfung von Einrichtungen des Stromnetzes hinsichtlich der Effekte von Blitzeinschlägen und der Wirksamkeit von Schutzmaßnahmen.

Eine Blitzentladung ist deutlich komplexer als eine reine Funkenentladung. Die der natürlichen Blitzentstehung zugrunde liegenden physikalischen Gesetzmäßigkeiten sind bis heute nicht abschließend erforscht.
Benjamin Franklin bewies am 15. Juni 1752 die Hypothese, dass bei Gewittern eine elektrische Spannung zwischen Wolken und der Erde besteht, indem er einen Drachen in aufziehende Gewitterwolken aufsteigen ließ und so eine Funkenentladung auslöste. Dies war der Beginn der neuzeitlichen Blitzforschung. Bis heute sind allerdings nicht alle Erscheinungsformen von Blitzen sowie die damit verbundenen Effekte umfassend und unumstritten wissenschaftlich erklärt, insbesondere wie die Ladungsunterschiede entstehen, die zum Blitz führen.

Heutzutage haben sich verschiedene Verfahren zur Untersuchung von Blitzen etabliert, die auch darauf achten, das Risiko für die Forscher möglichst gering zu halten (im Gegensatz zur Methode Franklins). Häufig werden Raketen abgeschossen, die einen metallischen Draht hinter sich herziehen (Blitztriggerung). Der Blitz gelangt durch den Draht zur Messstation, wo er analysiert werden kann. Andere Verfahren stützen sich auf Wetterballons oder Messungen durch Flugzeuge.

Lange Zeit war das Forschungsinteresse an natürlichen Blitzen gering, da man glaubte, sie wie Funkenentladungen behandeln zu können, wie sie ohne Weiteres im Labor erzeugt werden können. Erst seit Ende der 1990er-Jahre hat sich dies geändert, da Ungereimtheiten auftraten, die durch das einfache Modell nicht erklärt werden konnten. Es stellte sich als unmöglich heraus, mit den heutigen Mitteln Blitze zur Energiegewinnung auszunutzen.

Einige der jüngsten Forschungsprojekte sind:

In Österreich läuft auf dem Salzburger Sender Gaisberg ein Blitzforschungsprojekt von ALDIS. Es werden dabei direkte Blitzeinschläge in den Senderturm ausgewertet und unter anderem der Blitzstromverlauf messtechnisch erfasst.
In Brasilien untersucht das DLR-Forschungsflugzeug Falcon die Entstehung von Stickoxiden durch Blitze in tropischen Gewittern.
Im Jahre 2001 konnte nachgewiesen werden, dass Blitze auch Röntgen- und Gammastrahlung aussenden. Diese Ergebnisse wurden in den folgenden Jahren vielfach bestätigt, besonders durch den Nachweis von Gammastrahlung aus Gewitterzonen durch den NASA-Forschungssatelliten RHESSI.
Im Blitzkanal können auch Kernfusionsreaktionen stattfinden, wie durch Messungen einer russischen Forschungsgruppe nahe Moskau festgestellt wurde, wobei der während der Entladung auftretende Neutronenfluss einige Hundertfache des natürlichen Neutronenflusses (zirka 50 pro cm² und Stunde) betragen kann.
Am häufigsten beobachtet man Blitze zwischen speziellen Wolkentypen wie Cumulonimbus und Erde, in den Tropen fast täglich, in gemäßigten Breiten vorwiegend während der Sommermonate. Sehr zahlreiche Blitze werden auch bei Vulkanausbrüchen[3] beobachtet, bei denen aufsteigende Feuchtigkeit wohl nicht als Ursache in Frage kommt. In beiden Fällen konnte bisher nicht lückenlos aufgeklärt werden, wodurch es zu der gewaltigen Ladungstrennung kommt, die vorher stattgefunden haben muss. Rätselhaft ist der offensichtliche Unterschied zu Laborexperimenten mit Gasen, wo es wegen der guten Beweglichkeit der Moleküle schwierig ist, Ladungstrennung ohne metallische Leiter und Isolatoren zu erzeugen und längere Zeit aufrechtzuerhalten.

Entstehung elektrischer Ladung in einer Gewitterwolke
Grundvoraussetzung für die Entstehung von Blitzen ist die Ladungstrennung. Nach heutigem Wissensstand können eine Reihe von Mechanismen innerhalb der Gewitterwolken dazu beitragen. Man unterscheidet dabei zwischen Aufladungsmechanismen, die mit Influenz und ohne Influenz wirken können, wobei letztere die weitaus wichtigere Kategorie darstellen.

Grundvoraussetzung für die Trennung von elektrischer Ladung ist die Reibung durch kräftige Aufwinde innerhalb einer Cumulonimbuswolke, die 5–20 m/s und mehr[4] erreichen können. In der Wolke kondensiert übersättigter Wasserdampf zu kleinen, aber ständig wachsenden Wassertröpfchen. Die Kondensation setzt Wärme frei. Dadurch bekommt die Luft eine höhere Temperatur als sie in gleicher Höhe ohne Kondensation hätte. Dies erhöht ihren Auftrieb im Vergleich zur Luft außerhalb der Wolke. Der Aufstieg beschleunigt sich. Beim Aufstieg kühlt sich die Luft durch den mit der Höhe sinkenden Druck adiabatisch ab, was die Kondensation verstärkt und den Aufstieg weiter beschleunigt. In einigen Kilometern Höhe wird die Nullgradgrenze unterschritten und die Wassertropfen gefrieren zu Eispartikeln, die durch Resublimation weiter anwachsen. Mit der Zeit werden die Graupelteilchen schwer genug, dass sie entgegen der Richtung der Aufwinde zum Erdboden fallen.

Vermutlich kollidieren in diesem Stadium kleinere, noch leichte Eiskristalle mit den Graupelteilchen und geben dabei Elektronen an die Graupelteilchen ab. Diese nehmen eine negative Ladung an und sinken so geladen weiter in den unteren Teil der Wolke. Die leichten, jetzt positiv geladenen Eiskristalle werden von den Aufwinden weiter nach oben getragen. Bei ausreichend hoher Steiggeschwindigkeit kommt es zu einer Ladungstrennung und es entstehen beachtliche Raumladungen.[5] In der Tropical Rainfall Measurement Mission (TRMM) wurde festgestellt, dass die Stärke der Raumladungen direkt vom Eisgehalt der Wolke abhängt. Das bedeutet eine starke Korrelation zwischen der Eismenge in einer Wolke und der Blitzhäufigkeit.[6]

In Wolkenbereichen mit hohem Graupelanteil werden Luftmassen durch die nach unten fallenden Graupelteilchen mit nach unten gerissen und es entstehen Abwindkanäle in der Gewitterwolke. In ihnen gelangen die negativ geladenen Graupelteilchen zunächst in den unteren Teil der Wolke. Der nun negativ geladene untere Teil der Wolke bewirkt nun durch Influenz, dass sich der unter der Wolke befindliche Erdboden positiv auflädt, es kommt zur klassischen Ladungsverteilung in einer Gewitterwolke. Hinzu kommt, dass im unteren Teil der Gewitterwolke die Graupelteilchen wieder schmelzen und sich dabei wieder positiv aufladen. Die gängige Erklärung lautet, dass sich beim Anwachsen des Graupelteilchens in der Höhe Lufteinschlüsse bilden, die beim späteren Auftauen den Wassertropfen verlassen und dabei an der Oberfläche befindliche negative Ladung mit sich nehmen. Auf diese Weise wird der unter der Wolke ausfallende Niederschlag elektrisch neutral oder – wie man beobachtet hat – sogar positiv geladen, während die negative Ladung im unteren Teil der Wolke verbleibt.[7] Die teilweise extrem starken Turbulenzen innerhalb von Gewitterwolken erlauben kaum eine experimentelle Überprüfung all dieser Vermutungen.

Man kann sich weitere Prozesse vorstellen, welche diese Ladungsverteilung unterstützen: Die durch Resublimation anwachsenden Graupelteilchen können sich positiv aufladen und diese ihre Ladung bei Kollisionen an leichtere Eiskristalle abgeben, bevor oder während sie in Richtung Erdboden fallen. Der umgekehrte Effekt, also die negative Aufladung von sublimierendem Eis, käme dann in den Abwindkanälen zum Tragen.[7]

In der bereits geladenen Gewitterwolke können weitere Ladungstrennungsmechanismen hinzukommen: Der Nobelpreisträger Charles Thomson Rees Wilson schlug im Jahre 1929 vor, dass die durch die Anwesenheit der Raumladung dipol-artig vorgeladenen und entsprechend (trotz hoher Turbulenz!) ausgerichteten Niederschlagspartikel in der Luft befindliche Ionen je nach Polarität entweder eingefangen oder abgestoßen werden können, unabhängig, ob diese gefroren oder flüssig sind.

In der Praxis kann man mit Elektrofeldmetern messen, dass die oben dargestellte Ladungsverteilung im Gewitter häufig zutrifft, dass es aber auch abhängig von der Art des Gewitters (Frontengewitter, Wärmegewitter) und des Reifestadiums starke Abweichungen geben kann, wie zum Beispiel weit in den unteren Teil der Wolke reichende positive Raumladungen, negative Areale am Boden oder positive Wolkenuntergrenze im Spätstadium eines Gewitters. Eine Klärung aller Zusammenhänge steht bis heute aus.
Ein Blitz ist ein Potentialausgleich innerhalb der Wolke (Wolkenblitz) oder zwischen dem Erdboden und dem unteren Teil der Wolke (Erdblitz). Für Blitze zwischen der Wolke und der Erde muss der Potentialunterschied (die Spannung) einige zehn Millionen Volt betragen. In Luft kommt es erst zu einer elektrischen Funkenentladung bei einer elektrischen Feldstärke von ca. drei Millionen Volt pro Meter (der so genannten Durchbruchfeldstärke); dieser Wert sinkt jedoch stark mit zunehmender Luftfeuchtigkeit. Allerdings wurden solche Feldstärken in einer Gewitterwolke noch nie gemessen. Messungen ergeben nur extrem selten Feldstärken von über 200.000 V/m, was deutlich unter dem Wert für den Durchbruch liegt. Daher wird heute davon ausgegangen, dass die Luft zuerst durch Ionisation leitfähig gemacht werden muss, damit es zu einer Blitzentladung kommen kann.

Entstehung eines Blitzkanals durch Ionisation: Leitblitz, Fangentladung und Hauptblitz
Einige Forscher, als erster Wilson im Jahre 1925, gehen davon aus, dass durch kosmische Strahlung angeregte Elektronen den Anfang einer Blitzentstehung bilden. Trifft ein solches Elektron auf ein Luftmolekül einer Gewitterwolke, so werden weitere hochenergetische Elektronen freigesetzt. Es kommt zu einer Kettenreaktion, in deren Folge eine Elektronenlawine entsteht (Runaway-Elektronen genannt, der genaue Mechanismus findet sich im Artikel Runaway-Breakdown erklärt).

Einer Blitzentladung geht eine Serie von Vorentladungen voraus, die gegen die Erdoberfläche gerichtet sind. Dabei wird ein Blitzkanal (Leitblitz) geschaffen, d. h. ein elektrisch leitender Kanal wird durch Stoßionisation der Luftmoleküle durch die Runaway-Elektronen gebildet. Der ionisierte Blitzkanal baut sich stufenweise auf (daher engl. stepped leader), bis er zwischen Erdoberfläche und Wolke hergestellt ist. Die Vorentladungen sind zwar zum Erdboden hin gerichtet, variieren aber innerhalb weniger Meter leicht ihre Richtung und können sich stellenweise aufspalten. Dadurch kommen die Zick-Zack-Form und die Verästelungen des Blitzes zustande. Der Leitblitz emittiert – wie neue Forschungen zeigen – auch Röntgenstrahlung mit einer Energie von 250.000 Elektronenvolt (siehe hierzu die Literaturhinweise). Forscher der Universität Florida haben 2004 nachgewiesen, dass die gemessenen Ausbrüche von Röntgenstrahlen zusammen mit der Bildung der einzelnen Stufen des Leitblitzes auftreten. Dabei nimmt die Intensität der Strahlung mit der Anzahl der Stufen zu, je länger also der Blitzkanal wird. Während der Hauptentladungen wurden keine Röntgenstrahlen gemessen. Noch ist nicht bekannt, wodurch die Elektronen im Leitblitz so stark beschleunigt werden. Der Vorgang des Runaway-Breakdown allein reicht für die gemessene Strahlung nicht aus (siehe dazu auch in den Weblinks).

Kurz bevor die Vorentladungen den Erdboden erreichen, gehen vom Boden eine oder mehrere Fangentladungen aus, welche bläulich und sehr lichtschwach sind. Eine Fangentladung tritt meistens bei spitzen Gegenständen (wie Bäumen, Masten oder Kirchtürmen) aus, welche sich in ihrer Höhe von der Umgebung abheben. Meist – aber nicht immer – trifft eine der Fangentladungen mit den Vorentladungen zusammen und bildet einen geschlossenen Blitzkanal zwischen Wolke und Erdboden. Der Blitzkanal weist maximal 12 mm im Durchmesser auf. Durch diesen Kanal erfolgt dann die Hauptentladung, welche sehr hell ist und als eigentlicher Blitz wahrgenommen wird. Das Leuchten des Blitzes wird durch die Bildung von Plasma verursacht.
Im Durchschnitt bilden vier bis fünf Hauptentladungen einen Blitz. Die Vorentladungen benötigen zusammengenommen etwa 0,01 Sekunden, die Hauptentladung dauert nur 30 µs (0,00003 s). Nach einer Erholungspause zwischen 0,03 s und 0,05 s erfolgt eine neue Entladung. Es wurden schon bis zu 42 aufeinander folgende Entladungen beobachtet. Dadurch kommt das Flackern eines Blitzes zustande.

Die Stromstärke einer Hauptentladung beträgt im Durchschnitt etwa 20.000 Ampere, wodurch ein starkes Magnetfeld den Blitzkanal umgibt. Die Kombination aus Strom und Magnetfeld bewirkt eine Kompression des leitfähigen Plasmakanals (Pinch-Effekt), der einen Durchmesser von nur wenigen Zentimetern besitzt.

Meistens fließt die negative Ladung von der Wolkenunterseite zum Boden, man spricht vom Negativblitz. In seltenen Fällen wird positive Ladung der Erdoberfläche zugeführt (Positivblitz). Meistens handelt es sich hierbei um eine besonders intensive Entladung, deren Hauptentladung auch deutlich länger anhält als beim Negativblitz. Der Positivblitz besteht in aller Regel auch nur aus einer Hauptentladung. Die Stromstärke einer Hauptentladung bei Positivblitzen wird mit bis zu 300.000 Ampere angegeben. Sie sind daher weitaus gefährlicher als Negativblitze, machen allerdings nur etwa 5 % aller Erdblitze aus. Positivblitze entstammen oft dem oberen, positiv geladenen Teil der Gewitterwolke oder dem Wolkenschirm. Sie können auch aus der Wolke austreten und durch den wolkenfreien Raum ihren Weg zu einem Einschlagsziel am Boden nehmen. Die Einschlagstelle kann dabei durchaus einige Kilometer von der Gewitterzelle entfernt liegen. Positivblitze treten auch in den rückwärtigen, stratiformen Bereichen des Gewitters sowie in deren Auflösungsphase auf. Außerdem haben Wintergewitter, in denen der Niederschlag in gefrorener Form fällt, einen hohen Positivblitzanteil.[8]

Die Anstiegsgeschwindigkeit eines Blitzstroms beträgt durchschnittlich 7000 Ampere pro Mikrosekunde. Demzufolge steigt auch die Stärke des dazugehörigen Magnetfelds entsprechend an. Dadurch ist ein Blitz in der Lage, selbst in mehreren Kilometern Entfernung erhebliche elektrische Spannungen zu induzieren.

Anschließend zum Hauptblitz kann durch den ionisierten Blitzkanal ein Ladungsausgleich erfolgen, der 10 bis einige 100 ms anhält. Dabei fließt ein annähernd konstanter Strom von 10 bis 1000 A. Dieser Langzeitstrom tritt häufig nach positiven Blitzen auf und wird auch als „Stromschwanz“ bezeichnet.

Die durchschnittliche Länge eines Erdblitzes (Negativblitz) beträgt in mittleren Breiten 1 bis 2 km, in den Tropen aufgrund der höheren Luftfeuchtigkeit 2 bis 3 km. Positivblitze reichen nicht selten von den oberen Regionen der Gewitterwolke bis zum Erdboden und kommen daher auf Längen von deutlich über 10 km. Ein Wolkenblitz ist ca. fünf bis sieben Kilometer lang.

Entstehung des Donners
→ Hauptartikel: Donner
Im Blitzkanal wird die Luft schlagartig auf bis zu 30.000 °C erhitzt. Das den Blitzkanal schlauchförmig umhüllende Magnetfeld verhindert dabei die Ausdehnung der ionisierten und damit magnetisch beeinflussbaren Luftmoleküle. Die Folge ist ein extrem hoher Druck. Mit dem Ende des Leitblitzes und damit des Stroms bricht auch das Magnetfeld zusammen und die heiße Luft dehnt sich explosionsartig aus, wodurch der Knall des Donners hervorgerufen wird. Das Grollen des Donners kommt durch Echo-Effekte, durch unterschiedliche Distanzen zum Blitzkanal und durch Dispersion (Abhängigkeit der Schallausbreitung von der Wellenlänge) zustande. Der Blitz selbst erreicht etwa ein Zehntel bis ein Drittel der Lichtgeschwindigkeit, wobei die für das Auge nicht wahrnehmbare Vorentladung (Leitblitz) nur mit einem Tausendstel der Lichtgeschwindigkeit verläuft, also mit 300 Kilometer pro Sekunde. Blitzentladungen innerhalb der Wolke werden gewöhnlich von einem länger anhaltenden und weniger scharf polternden Geräusch begleitet. Dies hängt zum einen mit der gewöhnlich größeren Distanz zusammen, ist aber vor allem auf die verschiedene Orientierung und Struktur von Erdblitz und Wolkenblitz zurückzuführen.

An der Stelle, wo der Blitz in den Boden geht (oder aus ihm heraus) bildet sich ein starkes Spannungsfeld (hohes Potential), das von der Stelle des Einschlags nach außen hin kreisförmig abnimmt und sich in das Erdreich kegelförmig spitz fortsetzt, daher der Name. Fläche, Tiefe und Potential des Kegels sind z. B. abhängig von der Stärke des Blitzes, der Bodenbeschaffenheit und Feuchtigkeit. Im Zentrum des Kegels kann es zu Gesteinsaufschmelzung kommen. Es entsteht dann ein Fulgurit.

Mit „Blitzschlag“ ist nicht nur der direkte Treffer gemeint, sondern auch Schädigungen durch den Spannungskegel. Steht z. B. ein Blitzopfer mit beiden Beinen auf dem Boden, befindet sich jedes Bein auf einem etwas anderen Potential. Die Potentialdifferenz im Körper, die sogenannte Schrittspannung, führt zu Schäden an Organen. Diese sind nicht tödlich, falls die Differenz gering ist, z. B. wenn das Opfer im Moment des Einschlags beide Füße dicht nebeneinander hat und die Spannungsdifferenz minimiert ist. Bei jemandem, der mit Kopf oder Füßen in Richtung Einschlagstelle liegt, ist die Spannungsdifferenz u. U. aber sehr groß. Dann kann auch ein Einschlag, der weiter entfernt ist, zu schweren Schäden führen. Aus diesem Grund sind vierbeinige Tiere (Kühe auf der Weide) besonders gefährdet. Stärke und Form des Spannungskegels sind in der Regel nicht vorhersehbar.

Linienblitz
Ein Linienblitz hat keine Verzweigungen. Er sucht sich jedoch nicht immer den direkten Weg zum Erdboden, sondern kann auch Bögen beschreiben, die aus einer bestimmten Perspektive als Knoten und kreisförmige Verschlingungen gesehen werden können. Der Linienblitz ist häufiger zu sehen als andere Blitze.

Flächenblitz
Ein Flächenblitz zeigt zahlreiche Verzweigungen vom Hauptblitzkanal.

Perlschnurblitz
Der Perlschnurblitz ist eine Blitzart, bei der der Blitz nicht durch einen zusammenhängenden Blitzkanal gekennzeichnet ist, sondern in einzelne, meistens nur wenige Meter lange Segmente zerfällt. Diese einzelnen Segmente leuchten heller und meistens auch etwas länger als ein „normaler“ Linienblitz. Von weitem betrachtet sehen die kurzen, leuchtenden Segmente des Blitzes wie eine Perlenschnur aus.

Perlschnurblitze sind wie Kugelblitze sehr seltene Blitzphänomene. In Laboren ist es bereits gelungen, Perlschnurblitze künstlich zu erzeugen. Dennoch hat man ihre Bildung noch nicht restlos verstanden: Als Ursache könnten Instabilitäten im Plasma des Blitzkanals in Frage kommen.

Kugelblitz
Kugelblitze können angeblich durch Mauern und Ritzen dringen, Treppen steigen oder sich im Sturm langsam gegen die Windrichtung bewegen. Dafür gibt es keine physikalische Grundlage.

Wetterleuchten
Unter Wetterleuchten (mittelhochdeutsch weterleichen zu „weter“ (Wetter) + „leichen“ (tanzen, hüpfen), nicht verwandt mit leuchten, wie oft angenommen) wird meistens der Widerschein von Blitzen verstanden, wenn man die Blitze selbst nicht sieht. Es kann bei einem weit entfernten Gewitter oder bei Blitzen, die sich innerhalb von Wolken entladen, entstehen. Den Donner hört man wegen der großen Distanzen meistens nicht oder nur schwach.

Elmsfeuer
→ Hauptartikel: Elmsfeuer
Ein Elmsfeuer ist eine Funkenentladung gegen die umgebende Luft. Technisch betrachtet ist sie eine Vorentladung aufgrund großer Feldstärke. Sie tritt meistens an hohen Gegenständen wie Antennenmasten, Schiffsmasten, Flugzeugen (beim Fliegen in Gewitternähe oder einer mit Aschepartikeln durchtränkten Luftschicht) oder Gipfelkreuzen auf. Elmsfeuer können eine Blitzentladung einleiten. Bergsteiger berichten oft, dass diese sog. Spitzenentladung auch am Pickel auftritt, den man daher bei Gewittern nicht in der Hand tragen soll.

Positiver Blitz
Ein positiver Blitz ist ein Blitz, bei dem die Blitzentladung aus dem oberen, positiv geladenen Teil der Wolke zum Boden erfolgt. Diese Blitze sind um einiges stärker als negative Blitze und können kilometerweit vom eigentlichen Gewitter entfernt einschlagen. Zusätzlich leuchten sie auch länger als ein negativer Blitz und können einen weit größeren Schaden anrichten. Der Donner ist durch den länger anhaltenden Potentialausgleich lauter, einem Knall ähnlich und wird von einem niederfrequenten Poltern begleitet.

Entfernungsabschätzung über das Zeitintervall zum Donner
Um bei einem Gewitter ohne Messmittel eine ungefähre Entfernungsangabe zu erhalten, kann die Zeit zwischen Blitz und Donner gemessen (gezählt) werden. Dabei wird die Laufzeit des Lichtes als geringfügig vernachlässigt. Diese Zeit in Sekunden, multipliziert mit der Schallgeschwindigkeit (343 m/s), ergibt die Entfernung in Metern. Annäherungsweise kann auch die Zeit in Sekunden geteilt durch drei für die ungefähre Entfernung in Kilometern gerechnet werden. Zur Bestimmung des Donnerzeitpunktes ist dabei stets das erste wahrnehmbare Schallsignal zu verwenden, welches vom Blitz auf kürzestem Weg zum Beobachter gelangt, und somit die Entfernung zu diesem Abschnitt des Blitzkanals relativ genau wiedergibt. Je nach Art des Blitzes ist dieser Blitzkanalabschnitt im Allgemeinen entweder der am nächsten zum Beobachter liegende Teil eines Wolkenblitzes, oder der etwas oberhalb des Bodens liegende eines Bodenblitzes. Die Schallsignale von weiter entfernten Abschnitten des Blitzkanals bilden zusammen mit durch Reflexionen und Beugungen verzögerten Bestandteilen das Donnergrollen, welches wesentlich lauter als das Primärereignis sein kann.

Blitze richten in Deutschland jährlich Schäden in Höhe von mehreren Millionen Euro an. Durch Blitzeinschlag können Haus- und Waldbrände entstehen, zunehmend werden jedoch elektrische Geräte beschädigt. Zum Schutz werden daher viele Gebäude mit einem Blitzschutzsystem versehen. Von Versicherungsgesellschaften wird der Blitzschutz privater Gebäude jedoch nicht ausdrücklich verlangt.

Schäden entstehen jedoch nicht nur durch direkten Einschlag, sondern auch durch Potentialunterschiede elektrischer Anlagen oder des Bodens, sowie durch elektromagnetische Induktion in längeren Kabelstrecken. Überspannungsschutzsteckdosen für elektronische Geräte wie Computer sind daher recht unzureichende Glieder einer Kette von Maßnahmen des Blitzschutzes. Werden sie allein eingesetzt, schützen sie insbesondere dann kaum, wenn an den Geräten weitere Leitungen angeschlossen sind (Telefonleitung, Antennenanlage, Kabelfernsehen). Wirksamer ist, alle Leitungen (Strom, Gas, Wasser, Telefon, Antenne, Kabelfernsehen) bei Gebäudeeintritt auf eine gemeinsame Potentialausgleichsschiene zu führen. Zusätzlich sollten die Strom- und Signalleitungen mit Überspannungsableitern (Grob- und Feinschutz) versehen sein. Bei Antennenanlagen gilt weiterhin die alte Regel, den Antennenstecker vor einem Gewitter vom Gerät abzuziehen.

Ein besonders spektakulärer Blitzschaden ereignete sich 1970 am Langwellensender Orlunda in Schweden. Damals zerstörte ein Blitzschlag den Fußpunktisolator des 250 Meter hohen Zentralmasts des Langwellensenders und brachte diesen dabei zum Einsturz.

Wirkung auf Menschen
Während eines Gewitters ist man im Freien – vor allem auf erhöhten Standpunkten – der Gefahr des Blitzschlags ausgesetzt. Die Wirkung eines direkten Blitzschlages entspricht dem eines Stromunfalls mit den für Hochspannungsunfälle typischen Verletzungen wie Verbrennungen. Dabei können sich Hautverletzungen in Form einer Lichtenberg-Figur ausbilden.

Weiter kann es durch den lauten Knall, welcher in einiger Entfernung als Donner wahrgenommen wird, zu Gehörschäden wie einem Hörsturz oder Tinnitus kommen. Je nach Situation können weitere indirekte Wirkungen bestehen, beispielsweise durch das Erschrecken oder die Blendwirkung, welche zu Folgeunfällen führen können. Personen, die sich in der Nähe eines Blitzschlags befunden haben, haben in der Folgezeit zum Teil physiologische oder psychische Störungen oder Veränderungen,[19][20] die sich sogar dauerhaft in einer Persönlichkeitsveränderung auswirken können.[21]

Tödlicher Blitzschlag ist in Deutschland selten geworden; die durchschnittlich drei bis sieben Todesopfer pro Jahr ließen sich durch weitere Vorsichtsmaßnahmen noch weiter reduzieren.[22] Im 19. Jahrhundert wurden in Deutschland noch an die 300 Personen jährlich vom Blitz getötet, da wesentlich mehr Menschen auf freiem Feld arbeiteten und sich nicht in geschützte Objekte wie Autos, Traktoren oder Mähdrescher zurückziehen konnten.

Verhalten bei Gewittern
Um nicht vom Blitz getroffen oder durch einen nahen Einschlag verletzt zu werden, müssen Sicherheitsvorkehrungen getroffen werden, von denen die wichtigsten hier vorgestellt werden. Nach der 30/30-Regel geht man davon aus, dass die Gefahr, von einem Blitz getroffen zu werden, hoch ist, sobald bei Heraufziehen eines Gewitters zwischen Blitz und Donner weniger als 30 Sekunden liegen bis zu dem Zeitpunkt, wo 30 Minuten nach dem letzten Blitz oder Donner vergangen sind.[23] Innerhalb dieser Zeit soll ein sicherer Ort aufgesucht und nicht wieder verlassen werden.

Schutz in Gebäuden oder Fahrzeugen suchen. Fahrzeuge mit geschlossener Metallkarosserie und Gebäude mit einem Blitzschutzsystem oder aus Stahlbeton wirken wie ein Faradayscher Käfig. Der metallische Käfig muss allerdings entsprechend dimensioniert sein, um die hohen Impulsströme ohne mechanische Verformungen aufnehmen zu können. Gelegentlich wird gemeldet, dass vom Blitz getroffene Autos Feuer gefangen haben[24]. Einen guten Schutzraum stellen außerdem die Bereiche am Boden unter Hochspannungsleitungen dar, welche über metallische Masten verfügen und deren Masten über Erdseile verbunden sind. Durch das Erdseil wird der Blitzstrom auf mehrere geerdete Masten verteilt und damit die Schrittspannung im Bereich des Erdungspunktes reduziert.[25] Gefahr droht weiter durch indirekte Auswirkungen wie die Schallwirkung (Knall), durch die Blendwirkung und den Schreck durch die Überraschung. Dadurch können Folgeunfälle, wie beispielsweise Stürze, ausgelöst werden.
Wenn kein Schutz in Gebäuden oder Fahrzeugen gefunden werden kann, gelten folgende Regeln:

Offenes Gelände, Hügel und Höhenzüge meiden.
Aufenthalt auf oder in Gewässern und Pools vermeiden.
Wegen der Schrittspannung Füße zusammenstellen, in die Hocke gehen, Arme am Körper halten, den Kopf einziehen, eine Vertiefung aufsuchen. Nicht auf den Boden legen, sondern den Kontaktbereich zum Boden minimieren.
Von allen größeren Objekten, auch Personen, mindestens 3 m Abstand halten (Überschlaggefahr)
Baurecht und Blitzschutz
→ Hauptartikel: Blitzschutz
Gesetzliche Vorgaben
Bauliche Anlagen, bei denen nach Lage, Bauart oder Nutzung Blitzschlag leicht eintreten oder zu schweren Folgen führen kann, sind mit dauernd wirksamen Blitzschutzanlagen zu versehen. (Deutschland – Auszug aus der Musterbauordnung 2002)

Bauliche Anlagen sind mit Blitzschutzanlagen, die den Erfahrungen der technischen Wissenschaften entsprechen, auszustatten, wenn sie durch ihre Höhe, Flächenausdehnung, Höhenlage oder Bauweise selbst gefährdet oder widmungsgemäß für den Aufenthalt einer größeren Personenzahl bestimmt sind oder wenn sie wegen ihres Verwendungszweckes, ihres Inhaltes oder zur Vermeidung einer Gefährdung der Nachbarschaft eines Blitzschutzes bedürfen. (Österreich – Auszug aus der Bauordnung Wien)

Diese oder ähnliche Vorgaben finden sich in vielen Landesbauordnungen. Der Gesetzgeber schreibt damit für jedes Bauvorhaben eine Einzelfallprüfung vor. Es ist zu prüfen, ob Blitzschlag leicht eintreten (zum Beispiel anhand der Lage und Ausdehnung des Gebäudes) oder zu schweren Folgen (zum Beispiel Personenschaden) führen kann.

Risikoanalyse – Blitzschutznachweis
Der Gesetzgeber benennt keine technische Regel, nach der diese Prüfung durchgeführt werden soll. Im Prinzip ist daher der Bauherr/Architekt in der Nachweisführung frei, soweit alle im Gesetzestext genannten Einflussgrößen (Lage, Bauart, Nutzung, Folgen) detailliert betrachtet werden.

In der Praxis erweist sich das als gar nicht so einfach, weil in der Regel die erforderlichen Abschätzungen eine entsprechende Erfahrung voraussetzen. Welcher Arbeitsaufwand hinter einer fachgerechten Risikobeurteilung stecken kann, lässt sich anhand der EN 62305 (VDE 0185-305)-11 Teil 2 ablesen. Diese Norm erfüllt vom Umfang die gesetzlichen Mindestanforderungen, die Anwendung ist also baurechtlich zulässig. Andererseits ist der Aufwand für die Datenerfassung und Berechnung für viele Bauvorhaben unangemessen hoch. Besonders problematisch ist jedoch, dass in Einzelfällen die Berechnungsergebnisse nicht mit dem geltenden Baurecht in Einklang stehen. Der Gesetzgeber oder die Rechtsprechung haben für bestimmte Gebäudetypen/Nutzergruppen andere Festlegungen getroffen. Weichen die Berechnungsergebnisse der Risikoermittlung von den gesetzlichen Forderungen ab, so sind grundsätzlich die höheren Anforderungen umzusetzen.

Die Risikoermittlung wird immer nur der erste Schritt bei der Planung einer Blitzschutz-Anlage sein, in einem weiteren Schritt sind die baurechtlichen Besonderheiten zu berücksichtigen und anschließend sind die in der Risikoermittlung getroffenen Annahmen (ausgewählte Reduktionsfaktoren, Schadenfaktoren usw.) umzusetzen. Auch für die anschließende Planung des Blitzschutzes einer baulichen Anlage werden in der EN 62305-11 Teil 1 bis 4 weiterführende Aussagen getroffen.

Nutzung von Blitzenergie
→ Hauptartikel: Nutzung von Blitzenergie
Mythologie
In der Bibel werden Blitze (und Donner) zum Beispiel für den Zorn Gottes verwendet (Ex 9,24 EU; 2 Sam 22,15 EU; Hi 37 EU; Ps 18 EU), für das Strafgericht Gottes (Sach 9,14 EU), für Gottes Offenbarung an die Menschen (Ex 20,18 EU; Offb 4,5 EU), für das Kommen des Menschensohnes (Mt 24,27 EU; Lk 17,24 EU), für das Fallen des Satans (Lk 10,18 EU), und für das Wesen der Engel und Auferstandenen (Hes 1,14 EU; Dan 10,6 EU; Mt 28,3 EU).

In der griechischen Antike waren die Blitze dem Zeus (wie bei den Römern dem Jupiter) zugeordnet, der sie schleuderte. Ein Blitzbündel in seiner Hand findet sich in literarischen Quellen (bspw. bei Homer) und auf Darstellungen seither.

Die Etrusker sahen in Blitzen Orakel, durch die sie die Zukunft und die Welt zu deuten versuchten. Die so genannten libri fungurales erläuterten die Deutung der Blitze. Schon zu dieser Zeit (zwischen 800 und 600 v. Chr.) wurden Blitze kategorisiert und beobachtet.

Die Germanen deuteten den Blitz als sichtbares Zeichen dafür, dass Thor (Donar) seinen Hammer zur Erde geschleudert hatte.

Bei den baltischen Völkern war es der Gewittergott Perkūnas.

Blitze auf anderen Planeten
Auch auf anderen Planeten unseres Sonnensystems, zum Beispiel auf der Venus oder dem Jupiter, treten Blitze auf. Voraussetzung dafür ist eine dichte Atmosphäre.

Lightning is a massive electrostatic discharge between the electrically charged regions within clouds or between a cloud and the surface of a planet. The charged regions within the atmosphere temporarily equalize themselves through a lightning flash, commonly referred to as a strike if it hits an object on the ground. There are three primary types of lightning; from a cloud to itself (intra-cloud or IC); from one cloud to another cloud (CC) and between a cloud and the ground (CG). Although lightning is always accompanied by the sound of thunder, distant lightning may be seen but may be too far away for the thunder to be heard.

On Earth, the lightning frequency is approximately 40–50 times a second or nearly 1.4 billion flashes per year[1] and the average duration is 30 microseconds.[2]

Many factors affect the frequency, distribution, strength and physical properties of a "typical" lightning flash in a particular region of the world. These factors include ground elevation, latitude, prevailing wind currents, relative humidity, proximity to warm and cold bodies of water, etc. To a certain degree, the ratio between IC, CC and CG lightning may also vary by season in middle latitudes.

Because human beings are terrestrial and most of their possessions are on the Earth, where lightning can damage or destroy them, CG lightning is the most studied and best understood of the three types, even though IC and CC are more common types of lightning. Lightning’s relative unpredictability limits a complete explanation of how or why it occurs, even after hundreds of years of scientific investigation.

A typical cloud to ground lightning flash culminates in the formation of an electrically conducting plasma channel through the air in excess of 5 kilometres (3.1 mi) tall, from within the cloud to the ground’s surface. The actual discharge is the final stage of a very complex process.[3] At its peak, a typical thunderstorm produces three or more strikes to the Earth per minute.[4]

Lightning primarily occurs when warm air is mixed with colder air masses, resulting in atmospheric disturbances necessary for polarizing the atmosphere.[citation needed] However, it can also occur during dust storms, forest fires, tornadoes, volcanic eruptions, and even in the cold of winter, where the lightning is known as thundersnow.[5][6] Hurricanes typically generate some lightning, mainly in the rainbands as much as 160 kilometres (99 mi) from the center.[7][8][9]

The science of lightning is called fulminology, and the fear of lightning is called astraphobia.

Lightning is not distributed evenly around the planet, as seen in the image on the right.

About 70% of lightning occurs over land in the tropics where atmospheric convection is the greatest. This occurs from both the mixture of warmer and colder air masses, as well as differences in moisture concentrations, and it generally happens at the boundaries between them. The flow of warm ocean currents past drier land masses, such as the Gulf Stream, partially explains the elevated frequency of lightning in the Southeast United States. Because the influence of small or absent land masses in the vast stretches of the world’s oceans limits the differences between these variants in the atmosphere, lightning is notably less frequent there than over larger landforms. The North and South Poles are limited in their coverage of thunderstorms and therefore result in areas with the least amount of lightning.

In general, cloud-to-ground (CG) lightning flashes account for only 25% of all total lightning flashes worldwide. Since the base of a thunderstorm is usually negatively charged, this is where most CG lightning originates. This region is typically at the elevation where freezing occurs within the cloud. Freezing, combined with collisions between ice and water, appears to be a critical part of the initial charge development and separation process. During wind-driven collisions, ice crystals tend to develop a positive charge, while a heavier, slushy mixture of ice and water (called graupel) develops a negative charge. Updrafts within a storm cloud separate the lighter ice crystals from the heavier graupel, causing the top region of the cloud to accumulate a positive space charge while the lower level accumulates a negative space charge.

Because the concentrated charge within the cloud must exceed the insulating properties of air, and this increases proportionally to the distance between the cloud and the ground, the proportion of CG strikes (versus cloud-to-cloud (CC) or in-cloud (IC) discharges) becomes greater when the cloud is closer to the ground. In the tropics, where the freezing level is generally higher in the atmosphere, only 10% of lightning flashes are CG. At the latitude of Norway (around 60° North latitude), where the freezing elevation is lower, 50% of lightning is CG.[10][11]

Lightning is usually produced by cumulonimbus clouds, which have bases that are typically 1–2 km (0.6-1.25 miles) above the ground and tops up to 15 km (9.3 mi) in height.

On Earth, the place where lightning occurs most often is near the small village of Kifuka in the mountains of the eastern Democratic Republic of the Congo,[12] where the elevation is around 975 m (3,200 ft). On average, this region receives 158 lightning strikes per 1 square kilometer (0.39 sq mi) per year.[13] Other lightning hotspots include Catatumbo lightning in Venezuela, Singapore,[14] Teresina in northern Brazil,[15] and "Lightning Alley" in Central Florida.

In order for an electrostatic discharge to occur, two things are necessary: 1) a sufficiently high electric potential between two regions of space must exist; and 2) a high-resistance medium must obstruct the free, unimpeded equalization of the opposite charges.

It is well understood that during a thunderstorm there is charge separation and aggregation in certain regions of the cloud; however the exact processes by which this occurs are not fully understood;[18] Main article: thunderstorm
The atmosphere provides the electrical insulation, or barrier, that prevents free equalization between charged regions of opposite polarity. This is overcome by "lightning", a complex process referred to as the lightning "flash".
As a thundercloud moves over the surface of the Earth, an equal electric charge, but of opposite polarity, is induced on the Earth’s surface underneath the cloud. The induced positive surface charge, when measured against a fixed point, will be small as the thundercloud approaches, increasing as the center of the storm arrives and dropping as the thundercloud passes. The referential value of the induced surface charge could be roughly represented as a bell curve.
The oppositely charged regions create an electric field within the air between them. This electric field varies in relation to the strength of the surface charge on the base of the thundercloud – the greater the accumulated charge, the higher the electrical field.

The best studied and understood form of lightning is cloud to ground (CG). Although more common, intracloud (IC) and cloud to cloud (CC) flashes are very difficult to study given there are no "physical" points to monitor inside the clouds. Also, given the very low probability lightning will strike the same point repeatedly and consistently, scientific inquiry is difficult at best even in the areas of high CG frequency. As such, knowing flash propagation is similar amongst all forms of lightning, the best means to describe the process is through an examination of the most studied form, cloud to ground.
In a process not well understood, a channel of ionized air, called a "leader", is initiated from a negatively charged region in the thundercloud. Leaders are electrically conductive channels of partially ionized gas that travel away from a region of dense charge. Negative leaders propagate away from densely charged region of negative charge, and positive leaders propagate from positively charged regions.

The positively and negatively charged leaders proceed in opposite directions, positive upwards within the cloud and negative towards the earth. Both ionic channels proceed, in their respective directions, in a number of successive spurts. Each leader "pools" ions at the leading tips, shooting out one or more new leaders, momentarily pooling again to concentrate charged ions, then shooting out another leader.

Leaders often split, forming branches in a tree-like pattern.[19] In addition, negative leaders travel in a discontinuous fashion. The resulting jerky movement of these "stepped leader(s)" can be readily observed in slow-motion videos of negative leaders as they head toward ground prior to a negative CG lightning strike. The negative leaders continue to propagate and split as they head downward, often speeding up as they get closer to the Earth’s surface.

About 90% of ionic channel lengths between "pools" are approximately 45 m (148 ft) in length.[20] The establishment of the ionic channel takes a comparatively long amount of time (hundreds of milliseconds) in comparison to resulting discharge which occurs within a few microseconds. The electric current needed to establish the channel, measured in the tens or hundreds of amperes, is dwarfed by subsequent currents during the actual discharge.

Initiation of the outward leaders is not well understood. The electric field strength within the thundercloud is not typically large enough to initiate this process by itself.[21] Many hypotheses have been proposed. One theory postulates that showers of relativistic electrons are created by cosmic rays and are then accelerated to higher velocities via a process called runaway breakdown. As these relativistic electrons collide and ionize neutral air molecules, they initiate leader formation. Another theory invokes locally enhanced electric fields being formed near elongated water droplets or ice crystals.[22] Percolation theory, especially for the case of biased percolation,[23][clarification needed] describes random connectivity phenomena, which produce an evolution of connected structures similar to that of lightning strikes.

When a stepped leader approaches the ground, the presence of opposite charges on the ground enhances the strength of the electric field. The electric field is strongest on grounded objects whose tops are closest to the base of the thundercloud, such as trees and tall buildings. If the electric field is strong enough, a positively charged ionic channel, called a positive or upward streamer, can develop from these points. This was first theorized by Heinz Kasemir.[24][25]

As negatively charged leaders approach, increasing the localized electric field strength, grounded objects already experiencing corona discharge exceed a threshold and form upward streamers.

Once a downward leader connects to an available upward leader, a process referred to as attachment, a low-resistance path is formed and discharge may occur. Photographs have been taken on which unattached streamers are clearly visible. The unattached downward leaders are also visible in branched lightning, none of which are connected to the earth, although it may appear they are.

Once a conductive channel bridges the ionized air between the negative charges in the cloud and the positive surface charges below, the flood gates are opened, and a massive electrical discharge follows. Neutralization of positive surface charges occurs first. An enormous current of positive charges races up the ionic channel towards the thundercloud. This is the ‘return stroke’ and it is the most luminous and noticeable part of the lightning discharge.

High-speed photography showing different parts of a lightning flash during the discharge process as seen in Toulouse, France.
The positive charges in the ground region surrounding the lightning strike are neutralized within microseconds as they race inward to the strike point, up the plasma channel, and back to the cloud. A huge surge of current creates large radial voltage differences along the surface of the ground. Called step potentials, they are responsible for more injuries and deaths than the strike itself.[citation needed] Electricity follows the path of least resistance. A portion of the return stroke current will often preferentially flow through one leg and out another, electrocuting an unlucky human or animal standing near the point where the lightning strikes.

The electrical current of the return stroke averages 30 kiloamperes for a typical negative CG flash, often referred to as "negative CG" lightning. In some cases, a positive ground to cloud (GC) lightning flash may originate from a positively charged region on the ground below a storm. These discharges normally originate from the tops of very tall structures, such as communications antennas. The rate at which the return stroke current travels has been found to be around 1×108 m/s.[27]

The massive flow of electrical current occurring during the return stroke combined with the rate at which it occurs (measured in microseconds) rapidly superheats the completed leader channel, forming a highly electrically-conductive plasma channel. The core temperature of the plasma during the return stroke may exceed 50,000 K, causing it to brilliantly radiate with a blue-white color. Once the electrical current stops flowing, the channel cools and dissipates over tens or hundreds of milliseconds, often disappearing as fragmented patches of glowing gas. The nearly instantaneous heating during the return stroke causes the air to explosively expand, producing a powerful shock wave that is heard as thunder.

Re-strike

High-speed videos (examined frame-by-frame) show that most negative CG lightning flashes are made up of 3 or 4 individual strokes, though there may be as many as 30.[28]

Each re-strike is separated by a relatively large amount of time, typically 40 to 50 milliseconds, as other charged regions in the cloud are discharged in subsequent strokes. Re-strikes often cause a noticeable "strobe light" effect.

Each successive stroke is preceded by intermediate dart leader strokes that have a faster rise time but lower amplitude than the initial return stroke. Each subsequent stroke usually re-uses the discharge channel taken by the previous one, but the channel may be offset from its previous position as wind displaces the hot channel.[30]

Transient currents during the flash

The electrical current within a typical negative CG lightning discharge rises very quickly to its peak value in 1–10 microseconds, then decays more slowly over 50–200 microseconds. The transient nature of the current within a lightning flash results in several phenomena that need to be addressed in the effective protection of ground-based structures. Rapidly changing currents tend to travel on the surface of a conductor. This is called skin effect, unlike direct currents "flowing through" the entire conductor like water through a hose. Hence, conductors used in the protection of facilities tend to be multi-stranded small wires woven together, that increases the surface area inversely in proportion to cross-sectional area.

The rapidly changing currents also create electromagnetic pulses (EMPs) that radiate outward from the ionic channel. This is a characteristic of all electrical sparks. The radiated pulses rapidly weaken as their distance from the origin increases. However if they pass over conductive elements, for instance electrical wires, communication lines or metallic pipes, they may induce a current which travels outward to its termination. This is the "surge" that, more often than not, results in the destruction of delicate electronics, electrical appliances or electric motors. Devices known as surge protectors (SPD) or transient voltage surge suppressors (TVSS) attached in series with these conductors can detect the lightning flash’s transient [irregular] current, and through an alteration of its physical properties, route the spike to an attached earthing ground, thereby protecting the equipment from damage.
There are three primary types of lightning, defined by what is at the "ends" of a flash channel. They are intracloud (IC), which occurs within a single thundercloud unit; cloud to cloud (CC), which starts and ends between two different "functional" thundercloud units; and cloud to ground, that primarily originates in the thundercloud and terminates on an Earth surface, but may also occur in the reverse direction, that is ground to cloud. There are variations of each type, such as "positive" versus "negative" CG flashes, that have different physical characteristics common to each which can be measured. Different common names used to describe a particular lightning event may be attributed to the same or different events.

Cloud-to-ground is the best known and third most common type of lightning. It is the best understood of all forms because it allows for scientific study given it terminates on a physical object, namely the Earth, and lends itself to being measured by instruments. Of the three primary types of lightning, it poses the greatest threat to life and property since it terminates or "strikes" the Earth. Cloud-to-ground (CG) lightning is a lightning discharge between a thundercloud and the ground. It is usually negative in polarity and is usually initiated by a stepped leader moving down from the cloud.

Ground-to-cloud lightning is an artificially initiated, or triggered, category of CG flashes. Triggered lightning originates from tall, positively-charged structures on the ground, such as towers on mountains that have been inductively charged by the negative cloud layer above.

CG lightning can occur with both positive and negative polarity. The polarity refers to the polarity of the charge in the region that originated the lightning leaders. An average bolt of negative lightning carries an electric current of 30,000 amperes (30 kA), and transfers 15 coulombs of electric charge and 500 megajoules of energy. Large bolts of lightning can carry up to 120 kA and 350 coulombs

Unlike the far more common "negative" lightning, positive lightning originates from the positively charged top of the clouds (generally anvil clouds) rather than the lower portion of the storm. Leaders form in the anvil of the cumulonimbus and may travel horizontally for several miles before veering towards the ground. A positive lightning bolt can strike anywhere within several miles of the anvil of the thunderstorm, often in areas experiencing clear or only slightly cloudy skies; they are also known as "bolts from the blue" for this reason. Positive lightning typically makes up less than 5% of all lightning strikes.[33] Because of the much greater distance to ground, the positively-charged region can develop considerably larger levels of charge and voltages than the negative charge regions in the lower part of the cloud. Positive lightning bolts are considerably hotter and longer than negative lightning. They can develop six to ten times the amount of charge and voltage of a negative bolt and the discharge current may last ten times longer.[34] A bolt of positive lightning may carry an electric current of 300 kA and the potential at the top of the cloud may exceed a billion volts — about 10 times that of negative lightning.[35] During a positive lightning strike, huge quantities of extremely low frequency (ELF) and very low frequency (VLF) radio waves are generated.[36] As a result of their greater power, as well as lack of warning, positive lightning strikes are considerably more dangerous. At the present time, aircraft are not designed to withstand such strikes, since their existence was unknown at the time standards were set, and the dangers unappreciated until the destruction of a glider in 1999.[37] The standard in force at the time of the crash, Advisory Circular AC 20-53A, was replaced by Advisory Circular AC 20-53B in 2006,[38] however it is unclear whether adequate protection against positive lightning was incorporated.[39][40] Positive lightning is also now believed to have been responsible for the 1963 in-flight explosion and subsequent crash of Pan Am Flight 214, a Boeing 707.[citation needed] Aircraft operating in U.S. airspace have been required to be equipped with static discharge wicks. Although their primary function is to mitigate radio interference due to static buildup through friction with the air, in the event of a lightning strike, a plane is designed to conduct the excess electricity through its skin and structure to the wicks to be safely discharged back into the atmosphere. These measures, however, may be insufficient for positive lightning.[41] Positive lightning has also been shown to trigger the occurrence of upper atmosphere lightning between the tops of clouds and the ionosphere. Positive lightning tends to occur more frequently in winter storms, as with thundersnow, and in the dissipation stage of a thunderstorm.

Lightning discharges may occur between areas of cloud without contacting the ground. When it occurs between two separate clouds it is known as inter-cloud lightning, and when it occurs between areas of differing electric potential within a single cloud it is known as intra-cloud lightning. Intra-cloud lightning is the most frequently occurring type.[42]

Intra-cloud lightning most commonly occurs between the upper anvil portion and lower reaches of a given thunderstorm. This lightning can sometimes be observed at great distances at night as so-called "heat lightning". In such instances, the observer may see only a flash of light without hearing any thunder. The "heat" portion of the term is a folk association between locally experienced warmth and the distant lightning flashes.

Another terminology used for cloud–cloud or cloud–cloud–ground lightning is "Anvil Crawler", due to the habit of the charge typically originating from beneath or within the anvil and scrambling through the upper cloud layers of a thunderstorm, normally generating multiple branch strokes which are dramatic to witness. These are usually seen as a thunderstorm passes over the observer or begins to decay. The most vivid crawler behavior occurs in well developed thunderstorms that feature extensive rear anvil shearing.

A team of physicists, including Joseph Dwyer at Florida Tech have developed a model of how thunderstorms produce high energy radiation. In this model, instead of lightning, thunderstorms can also result in an electrical breakdown of high-energy electrons and the antimatter equivalent, positrons. The interaction between the electrons and positrons creates explosive growth in some of these high energy particles emitting the observed terrestrial gamma-ray flashes and rapidly discharging the thundercloud, sometimes even faster than normal lightning. Even though abundant gamma-rays are emitted by this process, with little or no visible light, it creates an electrical breakdown within the storms now called "dark lightning" by the scientific community.

Ball lightning may be an atmospheric electrical phenomenon, the physical nature of which is still controversial. The term refers to reports of luminous, usually spherical objects which vary from pea-sized to several meters in diameter.[45] It is sometimes associated with thunderstorms, but unlike lightning flashes, which last only a fraction of a second, ball lightning reportedly lasts many seconds. Ball lightning has been described by eyewitnesses but rarely recorded by meteorologists.[46][47] Scientific data on natural ball lightning is scarce owing to its infrequency and unpredictability. The presumption of its existence is based on reported public sightings, and has therefore produced somewhat inconsistent findings.
Bead lightning refers to the decaying stage of a lightning channel in which the luminosity of the channel breaks up into segments. Nearly every lightning discharge will exhibit beading as the channel cools immediately after a return stroke, sometimes referred to as the lightning’s ‘bead-out’ stage. ‘Bead lightning’ is more properly a stage of a normal lightning discharge rather than a type of lightning in itself. Beading of a lightning channel is usually a small-scale feature, and therefore is often only apparent when the observer/camera is close to the lightning.[48] Dry lightning is used in Australia, Canada and the United States for lightning that occurs with no precipitation at the surface. This type of lightning is the most common natural cause of wildfires.[49] Pyrocumulus clouds produce lightning for the same reason that it is produced by cumulonimbus clouds.
Forked lightning is cloud-to-ground lightning that exhibits branching of its path.
Heat lightning is a lightning flash that appears to produce no discernible thunder because it occurs too far away for the thunder to be heard. The sound waves dissipate before they reach the observer.[50] Ribbon lightning occurs in thunderstorms with high cross winds and multiple return strokes. The wind will blow each successive return stroke slightly to one side of the previous return stroke, causing a ribbon effect.[citation needed] Rocket lightning is a form of cloud discharge, generally horizontal and at cloud base, with a luminous channel appearing to advance through the air with visually resolvable speed, often intermittently.[51] Sheet lightning refers to cloud-to-cloud lightning that exhibits a diffuse brightening of the surface of a cloud, caused by the actual discharge path being hidden or too far away. The lightning itself cannot be seen by the spectator, so it appears as only a flash, or a sheet of light. The lightning may be too far away to discern individual flashes.
Staccato lightning is a cloud-to-ground lightning (CG) strike which is a short-duration stroke that (often but not always) appears as a single very bright flash and often has considerable branching.[52] These are often found in the visual vault area near the mesocyclone of rotating thunderstorms and coincides with intensification of thunderstorm updrafts. A similar cloud-to-cloud strike consisting of a brief flash over a small area, appearing like a blip, also occurs in a similar area of rotating updrafts.[53] Superbolts are bolts of lightning around a hundred times brighter than normal. On Earth, one in a million lightning strikes is a superbolt.[citation needed] Sympathetic lightning refers to the tendency of lightning to be loosely coordinated across long distances. Discharges can appear in clusters when viewed from space.
Clear-air lightning is used in Australia, Canada and the United States to describe lightning that occurs with no apparent cloud close enough to have produced it. In the U.S. and Canadian Rockies, a thunderstorm can be in an adjacent valley and not observable from the valley where the lightning bolt strikes, either visually or audibly. European and Asian mountainous areas experience similar events. Also in areas such as sounds, large lakes or open plains, when the storm cell is on the near horizon (within 26 kilometres (16 mi)) there may be some distant activity, a strike can occur and as the storm is so far away, the strike is referred to as clear-air.
Objects struck by lightning experience heat and magnetic forces of great magnitude. The heat created by lightning currents traveling through a tree may vaporize its sap, causing a steam explosion that bursts the trunk. As lightning travels through sandy soil, the soil surrounding the plasma channel may melt, forming tubular structures called fulgurites. Humans or animals struck by lightning may suffer severe injury or even death due to internal organ and nervous system damage. Buildings or tall structures hit by lightning may be damaged as the lightning seeks unintended paths to ground. By safely conducting a lightning strike to ground, a lightning protection system can greatly reduce the probability of severe property damage.

Because the electrostatic discharge of terrestrial lightning superheats the air to plasma temperatures along the length of the discharge channel in a short duration, kinetic theory dictates gaseous molecules undergo a rapid increase in pressure and thus expand outward from the lightning creating a shock wave audible as thunder. Since the sound waves propagate not from a single point source but along the length of the lightning’s path, the sound origin’s varying distances from the observer can generate a rolling or rumbling effect. Perception of the sonic characteristics is further complicated by factors such as the irregular and possibly branching geometry of the lightning channel, by acoustic echoing from terrain, and by the typically multiple-stroke characteristic of the lightning strike.

Light travels at about 300,000,000 m/s. Sound travels through air at about 340 m/s. An observer can approximate the distance to the strike by timing the interval between the visible lightning and the audible thunder it generates. A lightning flash preceding its thunder by five seconds would be about one mile (1.6 km) (5×340 m) distant. A flash preceding thunder by three seconds is about one kilometer (0.62 mi) (3×340 m) distant. Consequently, a lightning strike observed at a very close distance will be accompanied by a sudden clap of thunder, with almost no perceptible time lapse, possibly accompanied by the smell of ozone

The production of X-rays by a bolt of lightning was theoretically predicted as early as 1925[54] but no evidence was found until 2001/2002,[55][56][57] when researchers at the New Mexico Institute of Mining and Technology detected X-ray emissions from an induced lightning strike along a grounded wire trailed behind a rocket shot into a storm cloud. In the same year University of Florida and Florida Tech researchers used an array of electric field and X-ray detectors at a lightning research facility in North Florida to confirm that natural lightning makes X-rays in large quantities during the propagation of stepped leaders. The cause of the X-ray emissions is still a matter for research, as the temperature of lightning is too low to account for the X-rays observed.[58][59]

A number of observations by space-based telescopes have revealed even higher energy gamma ray emissions, the so-called terrestrial gamma-ray flashes (TGFs). These observations pose a challenge to current theories of lightning, especially with the recent discovery of the clear signatures of antimatter produced in lightning

Quelle:
en.wikipedia.org/wiki/Lightning
de.wikipedia.org/wiki/Blitz

Posted by !!! Painting with Light !!! #schauer on 2014-06-28 20:28:12

Tagged: , Schauer Christian , Painting with Light , Oberdiendorf , Passau , Hauzenberg , Thunder , Germany , Deutschland , Bayern , Bavaria , Gewitter , Storm , Wetter , Weather , Long , Exposure , Night , Nuit , Noir , Nacht , tormenta , tempête , tempesta , flash , relámpago , noche , notte , Thunderstorm , Explosion , esplosione , explosión , WM , world cup , Soccer , Football , Fußball , Brasilien , Finale , Mondo , copa , tonnerre , Donner , Unwetter , vento , Wind , Regen , Rain , Summer , viento , vent , pluie , lluvia , pioggia , Nebel , Fog , Mist , nebbia , niebla , brouillard , Tag , Day , Dias , Dia

The colorful harvest

The colorful harvest

Die Äpfel (Malus) bilden eine Pflanzengattung der Kernobstgewächse (Pyrinae) aus der Familie der Rosengewächse (Rosaceae). Die Gattung umfasst etwa 42 bis 55 Arten laubwerfender Bäume und Sträucher aus Wäldern und Dickichten der nördlichen gemäßigten Zone in Europa, Asien und Nordamerika, aus denen auch eine große Anzahl an oft schwer unterscheidbaren Hybriden hervorgegangen ist.

Die weltweit mit Abstand bekannteste und wirtschaftlich sehr bedeutende Art ist der Kulturapfel (Malus domestica). Daneben werden manche aus Ostasien stammende Arten mit nur etwa kirschgroßen Früchten, wie etwa der Japanische Apfel (Malus floribunda), der Kirschapfel (Malus baccata) und Malus ×zumi in gemäßigten Klimagebieten als Ziersträucher und -bäume angepflanzt. Nicht zu verwechseln mit den Äpfeln sind die nicht näher verwandten Granatäpfel (Punica granatum).
Das Wort Apfel wird auf die urindogermanische Form *h₂ébōl zurückgeführt, die nur Fortsetzungen im westlichen indogermanischen Sprachgebiet (Germanisch, Keltisch, Baltisch und Slawisch) hat und dort in allen Formen den Apfel bezeichnet. In der Forschung herrscht Uneinigkeit darüber, wie die Form genau anzusetzen ist und ob es sich um das urindogermanische Apfelwort handelt oder eine Entlehnung aus einer anderen Sprache. Aus der Akkusativform urindogermanisch *h₂ébl-ṃ > urgermanisch *ablun entwickelt sich das urgermanisches Apfelwort *ablus, aus dem (mit weiterer grammatikalischer Umgestaltung) althochdeutsch apful > Apfel (Mehrzahl epfili > Äpfel), altenglisch æppel > apple, isländisch epli hervorgehen.
Habitus und Belaubung
Die Arten der Gattung Äpfel (Malus) sind sommergrüne Bäume oder Sträucher. Sie sind meist unbewehrt. Die wechselständig angeordneten Laubblätter sind gestielt. Die einfache Blattspreite ist oval bis eiförmig oder elliptisch. Die Blattränder sind meist gesägt, selten glatt und manchmal gelappt. Einige Arten bzw. Sorten werden wegen ihres purpurnen Laubes im Herbst geschätzt. Nebenblätter sind vorhanden, verwelken aber oft früh.

Blütenstände und Blüten
Die gestielten Blüten der Apfelbäume stehen einzeln oder in doldigen schirmrispigen Blütenständen. Die fünfzähligen, zwittrigen, radiärsymmetrischen Blüten sind meist flach becherförmig und weisen meist einen Durchmesser von 2 bis 5 cm auf. Häufig duften die Blüten. Die Blütenachse ist krugförmig. Die fünf grünen Kelchblätter sind auch noch an den Früchten erhalten. Die fünf freien Kronblätter sind weiß, rosa oder rot. In jeder Blüte sind viele (15 bis 50) Staubblätter vorhanden, mit weißen Staubfäden und gelben Staubbeuteln. Aus drei bis fünf Fruchtblättern besteht der unterständige Fruchtknoten. Die drei bis fünf Griffel sind nur an ihrer Basis verwachsen. Bei einigen Züchtungen sind die Blüten, durch Umwandlung der Staubblätter in kronblattähnliche Blütenblätter, halbgefüllt oder gefüllt.
Gemeinhin bekannt sind die mehr oder minder rundlichen, essbaren Früchte. Bei einigen Arten sind sie roh ungenießbar. Das fleischige Gewebe, das normalerweise als Frucht bezeichnet wird, entsteht nicht aus dem Fruchtknoten, sondern aus der Blütenachse; der Biologe spricht daher von Scheinfrüchten. Genauer ist die Apfelfrucht eine Sonderform der Sammelbalgfrucht. Ein Balg besteht aus einem Fruchtblatt, das mit sich selbst verwächst. Innerhalb des Fruchtfleisches entsteht aus dem balgähnlichen Fruchtblatt ein pergamentartiges Gehäuse. Im Fruchtfleisch selbst sind höchstens noch vereinzelt Steinzellennester enthalten. Die Samen sind braun oder schwarz; sie enthalten geringe Mengen an giftigen Cyaniden.
Die Gattung Malus gehört zur Subtribus Pyrinae der Tribus Pyreae in der Unterfamilie Spiraeoideae innerhalb der Familie Rosaceae. Der Gattungsname Malus wurde 1754 durch Philip Miller in Gard. Dict. Abr., 4. Auflage, S. 835, erstveröffentlicht. Synonyme für Malus Mill. sind Docyniopsis (C.K.Schneid.) Koidz., Eriolobus (DC.) M.Roem.[2]

Es gibt etwa 42 bis 55 Malus-Arten; hier eine Auflistung mit Heimatangaben. Zu den bekannten Sorten der fruchtliefernden Apfelbäume siehe Kulturapfel und Apfelsorten. In China sind etwa 25 Arten zu finden, davon 15 nur dort. Die Gattung Malus wird in (sechs[2] bis) acht Sektionen (2006 und 2008 zwei dazu gekommen) gegliedert:

Sektion Chloromeles: Mit nur noch drei gültigen Arten nur in Nordamerika:
Südlicher Wildapfel (Malus angustifolia (Aiton) Michx.): Heimat sind die USA.
Süßer Wildapfel (Malus coronaria (L.) Mill., Syn.: Malus bracteata Rehder, Malus coronaria var. dasycalyx Rehder, Malus fragrans Rehder, Malus glabrata Rehder, Malus glaucescens Rehder, Malus lancifolia Rehder, Pyrus coronaria L.): Heimat ist das östliche Nordamerika.
Savannen- oder Prärie-Wildapfel Malus ioensis (Alph.Wood) Britton: Heimat ist das westliche Nordamerika.
Sektion Docyniopsis: Mit nur vier Arten in Asien:
Malus doumeri (Bois) A.Chev. (Syn.: Malus formosana Kawak. & Koidz., Malus laosensis (Cardot) A.Chev., Pyrus doumeri Bois): Heimat ist China, Taiwan, Laos und Vietnam.
Malus leiocalyca S.Z.Huang: Heimat ist China.
Malus melliana (Hand.-Mazz.) Rehder: Heimat ist China.
Wollapfel (Malus tschonoskii (Maxim.) C.K.Schneid.): Heimat ist Japan.
Sektion Eriolobus (Seringe) C.K.Schneid.: Mit der einzigen Art:
Malus trilobata (Poir.) C.K.Schneid.: Die Heimat ist Kleinasien: Griechenland, Syrien, Libanon, Israel.
Sektion Florentinae Cheng et al.:[3] Malus florentina (Zuccagni) C.K.Schneid. (Syn.: Malus crataegifolia (Savi) Koehne)
Sektion Gymnomeles: Mit etwa sechs Arten:
Kirschapfel, auch Sibirischer Wildapfel oder Beerenapfel genannt (Malus baccata) (L.) Borkh. (Syn: Malus pallasiana Juz., Malus sibirica (Maxim.) Kom., Malus daochengensis C.L.Li, Malus rockii Rehder, Malus jinxianensis J.Q.Deng & J.Y.Hong, Malus xiaojinensis M.H.Cheng & N.G.Jiang): Heimat ist Ostasien.
Halls Apfel (Malus halliana Koehne): Heimat ist Japan und China.
Teeapfel oder Chinesischer Wildapfel (Malus hupehensis (Pamp.)) Rehder: Heimat ist China.
Malus mandshurica (Maxim.) Kom. ex Skvortsov (Syn: Malus cerasifera Spach, Malus sachalinensis Juz., Pyrus baccata var. mandshurica Maxim., Malus baccata ssp. mandshurica (Komarov) Likhonos, M. baccata var. mandshurica (Maxim.) C.K.Schneider): Heimat ist Ostasien.
Malus sikkimensis (Wenz.) Koehne ex C.K.Schneid.: Heimat ist der Himalaja.
Malus spontanea (Makino) Makino
Sektion Malus: Mit etwa elf Arten und einigen Hybriden:
Malus chitralensis Vassilcz.
Japanischer Wildapfel, auch Korallenapfel genannt (Malus floribunda Sieb. ex Van Houtte): Heimat ist Japan.
Malus muliensis T.C.Ku
Kaukasusapfel oder Orientalischer Apfel (Malus orientalis Uglitzk.), Bergwälder und Waldränder des südlichen Kaukasus – Neben M. sieversii zweitwichtigster Vorfahre des Kulturapfels
Malus prunifolia (Willd.) Borkh.: Heimat ist China.
Malus pumila Mill. (Syn.: Malus communis Poiret, M. dasyphylla Borkhausen, M. dasyphylla var. domestica Koidzumi, M. domestica Borkhausen, M. domestica subsp. pumila (Mill.) Likhonos, M. pumila var. domestica C.K.Schneider, Niedzwetzki-Apfel M. niedzwetzkyana Dieck ex Koehne, M. sylvestris ssp. mitis Mansfeld, Pyrus malus L., P. malus var. pumila Henry), (westliches Asien, Zentralasien und Osteuropa)
Asiatischer Wildapfel, auch Altai-Apfel (Malus sieversii (Ledeb.) M.Roem., Syn.: Malus kirghisorum Al.Fed. & Fed., Malus turkmenorum Juz. & Popov), Bergwälder Zentralasiens von Tadschikistan bis Westchina – wahrscheinlich Hauptstammform des Kulturapfels.
Chinesischer Apfel (Malus spectabilis (Aiton) Borkh.), (Asien, wahrscheinlich China)
Holzapfel oder Europäischer Wildapfel genannt (Malus sylvestris (L.) Mill.), westliches Asien und Europa – nach neuesten Untersuchungen vermutlich keine Stammform des Kulturapfels, jedoch möglicherweise darin eingekreuzt.
Malus zhaojiaoensis N.G.Jiang
Malus ×adstringens Zabel (= M. baccata × M. pumila)
Malus ×arnoldiana (Rehder) Sarg. ex Rehder (= M. baccata × M. floribunda, Syn.: Malus floribunda var. arnoldiana Rehder)
Malus ×asiatica Nakai (Syn.: Malus ringo Sieb. ex Carrière): Heimat ist China, dort gibt es viele Sorten für den Fruchtanbau.
Malus ×astracanica hort. ex Dum. Cours. (= M. prunifolia × M. pumila)
Kulturapfel (Malus domestica Borkh.), der Ursprung liegt in Asien. Die Stammformen sind wahrscheinlich der Asiatischer Wildapfel (M. sieversii) und der Kaukasusapfel (M. orientalis). Zudem werden frühe Kreuzungen mit M. dasyphylia und M. praecox angenommen.
Malus ×hartwigii Koehne (= M. baccata × M. halliana)
Malus ×magdeburgensis Hartwig (= M. pumila × M. spectabilis), (Deutschland, Zufallsfund in der Nähe von Magdeburg)
Malus ×micromalus Makino (= M. spectabilis × M. baccata): Wird in China weitverbreitet als Ziergehölz und auf Grund der essbaren Früchte angebaut.
Purpurapfel (Malus ×purpurea (A.Barbier) Rehder, = M. ×atrosanguinea × M. pumila, Syn.: Malus floribunda var. lemoinei É.Lemoine, Malus floribunda var. purpurea A.Barbier, Malus ×purpurea f. eleyi (Bean) Rehder, Malus ×purpurea f. lemoinei (É.Lemoine) Rehder, Malus ×purpurea var. aldenhamensis Rehder)
Malus ×robusta (Carrière) Rehder (= M. baccata × M. prunifolia, Syn.: Malus microcarpa var. robusta Carrière)
Malus ×scheideckeri Späth ex Zabel (= M. floribunda × M. prunifolia)
Sektion Sorbomalus (Zabel) C.K.Schneid.
Malus bhutanica (W.W.Sm.) J.B.Phipps (Syn.: Malus toringoides (Rehder) Hughes)
Oregon-Wildapfel (Malus fusca) (Raf.) C.K.Schneid. (Syn.: Malus diversifolia (Bong.) M.Roem., Malus rivularis (Douglas) M.Roem.), (nordwestliches Nordamerika)
Malus kansuensis (Batalin) C.K.Schneid.: Heimat ist das westliche China.
Malus komarovii (Sarg.) Rehder: Heimat ist China und das nördliche Korea
Malus maerkangensis M.H.Cheng et al.
Malus sargentii Rehder, (Japan)
Malus toringo (Sieb.) de Vriese (Syn.: Malus sieboldii (Regel) Rehder), (östliches Asien, Japan)
Malus transitoria (Batalin) C.K.Schneid. (Syn.: Malus bhutanica (W W.Sm.) J.B.Phipps), (nordwestliches China)
Zierapfel (Malus ×zumi (Matsum.) Rehder), keine Wildform bekannt; es gibt mehrere Sorten, zum Teil mit blutroten Blättern.
Malus ×atrosanguinea (hort. ex Späth) C.K.Schneid. (= M. halliana × M. toringo)
Sektion Yunnanenses (Rehd.) G.Z.Qian:[4] Mit nur vier Arten, die nur in China vorkommen:
Malus honanensis Rehder: Heimat ist China.
Malus ombrophila Hand.-Mazz.: Heimat ist China.
Malus prattii (Hemsl.) C.K.Schneider (Syn.: Malus kaido Dippel): Heimat sind nur die chinesischen Provinzen: westliches Sichuan und nordwestliches Yunnan
Malus yunnanensis (Franch.) C.K.Schneid.: Heimat ist das südwestliche China.
ohne Tribuszugehörigkeit:
Malus brevipes (Rehder) Rehder (ist nur aus Kultur bekannt)
Malus ×platycarpa Rehder (USA)
Malus ×sublobata (Dippel) Rehder (= M. prunifolia × M. toringo, Syn.: Malus ringo var. sublobata Dippel)
Malus ×soulardi
Es gibt auch Gattungskreuzungen innerhalb des Untertribus Pyrinae, zum Beispiel Sorbus × Malus und sogar Dreifachkreuzungen: (Cydonia × Pyrus) × Malus.
Malus (/ˈmeɪləs/[3] or /ˈmæləs/), apple, is a genus of about 30–55 species[4] of small deciduous trees or shrubs in the family Rosaceae, including the domesticated orchard apple (M. domestica). The other species are generally known as crabapples, crab apples, crabs, or wild apples.

The genus is native to the temperate zone of the Northern Hemisphere.
Apple trees are typically 4–12 m (13–39 ft) tall at maturity, with a dense, twiggy crown. The leaves are 3–10 cm (1.2–3.9 in) long, alternate, simple, with a serrated margin. The flowers are borne in corymbs, and have five petals, which may be white, pink or red, and are perfect, with usually red stamens that produce copious pollen, and a half-inferior ovary; flowering occurs in the spring after 50–80 growing degree days (varying greatly according to subspecies and cultivar).

Apples require cross-pollination between individuals by insects (typically bees, which freely visit the flowers for both nectar and pollen); all are self-sterile, and (with the exception of a few specially developed cultivars) self-pollination is impossible, making pollinating insects essential. Several Malus species, including domestic apples, hybridize freely.[6] They are used as food plants by the larvae of a large number of Lepidoptera species; see list of Lepidoptera that feed on Malus.

The fruit is a globose pome, varying in size from 1–4 cm (0.39–1.57 in) diameter in most of the wild species, to 6 cm (2.4 in) in M. sylvestris sieversii, 8 cm (3.1 in) in M. domestica, and even larger in certain cultivated orchard apples. The centre of the fruit contains five carpels arranged star-like, each containing one or two seeds.

For the Malus domestica cultivars, the cultivated apples, see Apple.

Crabapples are popular as compact ornamental trees, providing blossom in Spring and colourful fruit in Autumn. The fruits often persist throughout Winter. Numerous hybrid cultivars have been selected, of which ‘Evereste'[7] and ‘Red Sentinel'[8] have gained The Royal Horticultural Society’s Award of Garden Merit.

Other varieties are dealt with under their species names.

Some crabapples are used as rootstocks for domestic apples to add beneficial characteristics.[9] For example, varieties of Baccata, also called Siberian crab, rootstock is used to give additional cold hardiness to the combined plant for orchards in cold northern areas.[10]

They are also used as pollinizers in apple orchards. Varieties of crabapple are selected to bloom contemporaneously with the apple variety in an orchard planting, and the crabs are planted every sixth or seventh tree, or limbs of a crab tree are grafted onto some of the apple trees. In emergencies, a bucket or drum bouquet of crabapple flowering branches are placed near the beehives as orchard pollenizers. See also Fruit tree pollination. Because of the plentiful blossoms and small fruit, crabapples are popular for use in bonsai culture.

Crabapple fruit is not an important crop in most areas, being extremely sour and (in some species) woody, and is rarely eaten raw for this reason. In some southeast Asian cultures they are valued as a sour condiment, sometimes eaten with salt and chilli pepper, or shrimp paste.

Some crabapples varieties are an exception to the reputation of being sour, and can be very sweet, such as the ‘Chestnut’ cultivar.[11]

Crabapples are an excellent source of pectin, and their juice can be made into a ruby-coloured preserve with a full, spicy flavour.[12] A small percentage of crabapples in cider makes a more interesting flavour.[13] As Old English Wergulu, the crab apple is one of the nine plants invoked in the pagan Anglo-Saxon Nine Herbs Charm, recorded in the 10th century.

Apple wood gives off a pleasant scent when burned, and smoke from an apple wood fire gives an excellent flavour to smoked foods.[14] It is easier to cut when green; dry apple wood is exceedingly difficult to carve by hand.[14] It is a good wood for cooking fires because it burns hot and slow, without producing much flame.[14]

Crabapple has been listed as one of the 38 plants that are used to prepare Bach flower remedies,[15] a kind of alternative medicine promoted for its effect on health. However according to Cancer Research UK, "there is no scientific evidence to prove that flower remedies can control, cure or prevent any type of disease, including cancer".
Quelle:
en.wikipedia.org/wiki/Malus
de.wikipedia.org/wiki/%C3%84pfel
Apfelsaft (in der Schweiz und Österreich auch Süßmost) ist ein Fruchtsaft, der durch Pressung von Äpfeln gewonnen wird. Aus 1,5 kg Äpfeln kann ca. 1 Liter Apfelsaft gewonnen werden. Im großen Maßstab geschieht dies in Keltereien. Als Apfelschorle wird er mit Mineralwasser verdünnt getrunken. 2013 betrug in Deutschland der Pro-Kopf-Verbrauch an Apfelsaft 8,4 Liter und an Apfelsaftschorle 8,5 Liter.
Nach dem Pressen ist der Apfelsaft immer naturtrüb, d. h. fruchtfleischhaltig. Zentrifugiert und gefiltert erhält man den klaren Apfelsaft. Beide Varianten – naturtrüb und klar – werden durch Pasteurisation haltbar gemacht. Dabei wird der Saft kurz auf ca. 85 °C erhitzt, um Mikroorganismen abzutöten und die Gärung zu verhindern. Da der naturtrübe Apfelsaft nicht gefiltert wurde, befinden sich in ihm noch die Schwebstoffe. Sie lassen den Saft undurchsichtig erscheinen. Da sie schwerer sind als Wasser, setzen sie sich am Boden ab und sollten vor dem Trinken aufgeschüttelt werden. Aufgrund der in den Schwebstoffen enthaltenen Antioxidantien – es handelt sich hauptsächlich um Polyphenole – enthält naturtrüber Apfelsaft mehr sekundäre Pflanzenstoffe als gefilterter Saft.[2] In Tierversuchen entwickelten Mäuse und Ratten, denen Apfelsaft verabreicht wurde, bis zu 50 % weniger Tumoren, als die Vergleichsgruppe ohne die Apfelsaftgaben.[3][4] Der trübe Apfelsaft war in diesen Versuchen wirksamer als der klare.[5] Vermutlich sind hier die Procyanidine, die in trübem Apfelsaft in hoher Konzentration enthalten sind, die Ursache.[6] Darüber hinaus schmeckt der naturtrübe Apfelsaft meist auch natürlicher und kräftiger als der schwebstofffreie klare Saft. Sortenreine Apfelsäfte, die nur aus einer Apfelsorte gewonnen werden, erweitern die Angebotspalette an Apfelsaft mit einer hohen geschmacklichen Vielfalt.

Zur Herstellung von klarem Apfelsaft wird überwiegend Apfelsaftkonzentrat verwendet. Apfelsaftkonzentrat erhält man durch Entzug von Wasser und Abtrennen von Aromen. Dadurch reduziert sich das Volumen auf ca. ein Sechstel, sodass die Lagerung und der Transport günstiger werden. Durch Hinzufügen von speziell aufbereitetem Trinkwasser und den getrennt gelagerten Aromen erreicht man ein zum ursprünglichen Ausgangsprodukt gleichartiges Produkt. In der Fachsprache nennt sich das rekonstituieren. Die Verarbeitung von Apfelsaftkonzentrat bringt zusätzlich den Vorteil, durch Verschneiden (Mischen) unterschiedlich ausgeprägter Apfelsaftkonzentrate (süße/saure) einen gleichbleibenden Geschmack zu erreichen. Ansonsten würden je nach Apfelsorte und/oder Anbaugebiet unterschiedliche Geschmacksrichtungen im Apfelsaft auftreten.

Die Verfahren des Wasserentzuges und der Rückverdünnung beeinträchtigen auf modernen Konzentratanlagen den Geschmack und den Vitamingehalt kaum. In der deutschen Fruchtsaftverordnung (FrSaftV 2004) und in den Fruchtsaftrichtlinien der EU muss der rückverdünnte Saft gleichartige organoleptische und analytische Eigenschaften aufweisen wie ein nicht aus Konzentrat hergestellter Saft (Direktsaft) aus frischen Früchten derselben Art. Die analytische Gleichartigkeit der nicht flüchtigen Hauptinhaltsstoffe kann über Grad Brix, Zuckerspektrum, Aminosäurespektrum und Mineralstoffe beurteilt werden. Kennzahlen zur Beurteilung sind im AIJN Code of Practice[7] beschrieben. Für die Beurteilung der analytischen Gleichartigkeit des Apfelsaftaromas wird ein Aromaindex Apfel ermittelt.

Apfelsaft dient auch als Vorprodukt für Apfelwein (Cidre, Viez, Most), Apfelkraut und Apfelessig; darüber hinaus wird er auch zur Herstellung von Spirituosen, wie Obstbrand, Apfelkorn oder des bekannten Calvados verwendet.

In der Region um Frankfurt am Main wird der frische, trübe, nicht pasteurisierte Apfelsaft „Süßer“ genannt und zur Erntezeit genossen.

Streuobstwiesen sind eine traditionelle Form des Apfelanbaus. Deutsche Fruchtsafthersteller setzen sich aus Naturschutz- und Qualitätsgründen für dessen Erhaltung und Förderung ein. In Deutschland wird der Apfel bei der Fruchtsaftherstellung zu 100 Prozent verarbeitet. Etwa 75 Prozent ist die Saftausbeute, 25 Prozent bleiben als ausgepresste Maische mit Schalen und Kernen übrig – das ist der so genannte Trester. Er geht etwa zur Hälfte in die Herstellung von Apfelpektin, das z. B. als pflanzliches Geliermittel verwendet werden kann. Die andere Hälfte geht in die Tierfütterung oder Energiegewinnung.
Apple juice is a fruit juice made by the maceration and pressing of apples. The resulting expelled juice may be further treated by enzymatic and centrifugal clarification to remove the starch and pectin, which holds fine particulate in suspension, and then pasteurized for packaging in glass, metal or aseptic processing system containers, or further treated by dehydration processes to a concentrate.

Russet apple juice from Bolney, Mid Sussex, England, in a glass.
Due to the complex and costly equipment required to extract and clarify juice from apples in large volume, apple juice is normally commercially produced. In the United States, unfiltered fresh apple juice is made by smaller operations in areas of high apple production, in the form of unclarified apple cider. Apple juice is one of the most common fruit juices in the world, with world production led by China, Poland, the United States, and Germany.

Vitamin C is sometimes added by fortification, because content is variable,[2] and much of that is lost in processing.[citation needed] Vitamin C also helps to prevent oxidation of the product.[3] Other vitamin concentrations are low, but apple juice does contain various mineral nutrients, including boron, which may promote healthy bones.[4] Apple juice has a significant concentration of natural phenols of low molecular weight (including chlorogenic acid, flavan-3-ols, and flavonols) and procyanidins[5] that may protect from diseases associated with aging due to the antioxidant effects which help reduce the likelihood of developing cancer and Alzheimer’s disease.[6] Research suggests that apple juice increases acetylcholine in the brain, possibly resulting in improved memory.[7] Despite having some health benefits, apple juice is high in sugar. It has 28 g carbohydrates (24 g sugars) per 230 g (8 ounces). This results in 130 calories per 230 g (8 ounces) – protein and fat are not significant. Also like most fruit juice, apple juice contains a similar amount of sugar as the raw fruit, but lacks the fiber content.
While apple juice generally refers to the filtered, pasteurised product of apple pressing, an unfiltered and sometimes unpasteurised product commonly known as apple cider in the United States and parts of Canada may be packaged and sold as apple juice. In the U.S., the opposite is often seen; filtered and clarified juice (including carbonated varieties) may be sold as "apple cider", thus there is an unclear distinction between filtered apple juice and natural apple cider.[8] In other places such as New Zealand, Australia and the United Kingdom, apple cider is an alcoholic beverage. The alcoholic beverage referred to as cider in these areas is usually referred to as hard cider in the United States.

Recycling is a process to change (waste) materials into new products to prevent waste of potentially useful materials, reduce the consumption of fresh raw materials, reduce energy usage, reduce air pollution (from incineration) and water pollution (from landfilling) by reducing the need for "conventional" waste disposal, and lower greenhouse gas emissions as compared to plastic production.[1][2] Recycling is a key component of modern waste reduction and is the third component of the "Reduce, Reuse and Recycle" waste hierarchy.

There are some ISO standards related to recycling such as ISO 15270:2008 for plastics waste and ISO 14001:2004 for environmental management control of recycling practice.

Recyclable materials include many kinds of glass, paper, metal, plastic, textiles, and electronics. Although similar in effect, the composting or other reuse of biodegradable waste—such as food or garden waste—is considered recycling.[2] Materials to be recycled are either brought to a collection center or picked up from the curbside, then sorted, cleaned, and reprocessed into new materials bound for manufacturing.

In the strictest sense, recycling of a material would produce a fresh supply of the same material—for example, used office paper would be converted into new office paper, or used foamed polystyrene into new polystyrene. However, this is often difficult or too expensive (compared with producing the same product from raw materials or other sources), so "recycling" of many products or materials involves their reuse in producing different materials (e.g., paperboard) instead. Another form of recycling is the salvage of certain materials from complex products, either due to their intrinsic value (e.g., lead from car batteries, or gold from computer components), or due to their hazardous nature (e.g., removal and reuse of mercury from various items). Critics dispute the net economic and environmental benefits of recycling over its costs, and suggest that proponents of recycling often make matters worse and suffer from confirmation bias. Specifically, critics argue that the costs and energy used in collection and transportation detract from (and outweigh) the costs and energy saved in the production process; also that the jobs produced by the recycling industry can be a poor trade for the jobs lost in logging, mining, and other industries associated with virgin production; and that materials such as paper pulp can only be recycled a few times before material degradation prevents further recycling. Proponents of recycling dispute each of these claims, and the validity of arguments from both sides has led to enduring controversy.
Recycling has been a common practice for most of human history, with recorded advocates as far back as Plato in 400 BC. During periods when resources were scarce, archaeological studies of ancient waste dumps show less household waste (such as ash, broken tools and pottery)—implying more waste was being recycled in the absence of new material.

In pre-industrial times, there is evidence of scrap bronze and other metals being collected in Europe and melted down for perpetual reuse.[4] In Britain dust and ash from wood and coal fires was collected by ‘dustmen’ and downcycled as a base material used in brick making. The main driver for these types of recycling was the economic advantage of obtaining recycled feedstock instead of acquiring virgin material, as well as a lack of public waste removal in ever more densely populated areas.[3] In 1813, Benjamin Law developed the process of turning rags into ‘shoddy’ and ‘mungo’ wool in Batley, Yorkshire. This material combined recycled fibres with virgin wool. The West Yorkshire shoddy industry in towns such as Batley and Dewsbury, lasted from the early 19th century to at least 1914.

Industrialization spurred demand for affordable materials; aside from rags, ferrous scrap metals were coveted as they were cheaper to acquire than was virgin ore. Railroads both purchased and sold scrap metal in the 19th century, and the growing steel and automobile industries purchased scrap in the early 20th century. Many secondary goods were collected, processed, and sold by peddlers who combed dumps, city streets, and went door to door looking for discarded machinery, pots, pans, and other sources of metal. By World War I, thousands of such peddlers roamed the streets of American cities, taking advantage of market forces to recycle post-consumer materials back into industrial production.[5]

Beverage bottles were recycled with a refundable deposit at some drink manufacturers in Great Britain and Ireland around 1800, notably Schweppes.[6] An official recycling system with refundable deposits was established in Sweden for bottles in 1884 and aluminium beverage cans in 1982, by law, leading to a recycling rate for beverage containers of 84–99 percent depending on type, and average use of a glass bottle is over 20 refills.

Wartime
Recycling was a highlight throughout World War II. During the war, financial constraints and significant material shortages due to war efforts made it necessary for countries to reuse goods and recycle materials.[7] It was these resource shortages caused by the world wars, and other such world-changing occurrences that greatly encouraged recycling.[8] The struggles of war claimed much of the material resources available, leaving little for the civilian population.[7] It became necessary for most homes to recycle their waste, as recycling offered an extra source of materials allowing people to make the most of what was available to them. Recycling materials that were used in the household, meant more resources were available to support war efforts. This in turn meant a better chance of victory at war.[7] Massive government promotion campaigns were carried out in World War II in every country involved in the war, urging citizens to donate metals and conserve fibre, as a matter of significant patriotic importance. There was patriotism in recycling.

Post-war
A considerable investment in recycling occurred in the 1970s, due to rising energy costs.[citation needed] Recycling aluminium uses only 5% of the energy required by virgin production; glass, paper and metals have less dramatic but very significant energy savings when recycled feedstock is used.

As of 2014, the European Union has about 50% of world share of the waste and recycling industries, with over 60,000 companies employing 500,000 persons, with a turnover of €24 billion.[10] Countries have to reach recycling rates of at least 50%, while the lead countries are around 65% and the EU average is 39% as of 2013.
For a recycling program to work, having a large, stable supply of recyclable material is crucial. Three legislative options have been used to create such a supply: mandatory recycling collection, container deposit legislation, and refuse bans. Mandatory collection laws set recycling targets for cities to aim for, usually in the form that a certain percentage of a material must be diverted from the city’s waste stream by a target date. The city is then responsible for working to meet this target.[2]

Container deposit legislation involves offering a refund for the return of certain containers, typically glass, plastic, and metal. When a product in such a container is purchased, a small surcharge is added to the price. This surcharge can be reclaimed by the consumer if the container is returned to a collection point. These programs have been very successful, often resulting in an 80 percent recycling rate. Despite such good results, the shift in collection costs from local government to industry and consumers has created strong opposition to the creation of such programs in some areas.[2]

A third method of increase supply of recyclates is to ban the disposal of certain materials as waste, often including used oil, old batteries, tires and garden waste. One aim of this method is to create a viable economy for proper disposal of banned products. Care must be taken that enough of these recycling services exist, or such bans simply lead to increased illegal dumping.[2]

Government-mandated demand
Legislation has also been used to increase and maintain a demand for recycled materials. Four methods of such legislation exist: minimum recycled content mandates, utilization rates, procurement policies, recycled product labeling.

Both minimum recycled content mandates and utilization rates increase demand directly by forcing manufacturers to include recycling in their operations. Content mandates specify that a certain percentage of a new product must consist of recycled material. Utilization rates are a more flexible option: industries are permitted to meet the recycling targets at any point of their operation or even contract recycling out in exchange for [trade]able credits. Opponents to both of these methods point to the large increase in reporting requirements they impose, and claim that they rob industry of necessary flexibility.

Governments have used their own purchasing power to increase recycling demand through what are called "procurement policies." These policies are either "set-asides," which earmark a certain amount of spending solely towards recycled products, or "price preference" programs which provide a larger budget when recycled items are purchased. Additional regulations can target specific cases: in the United States, for example, the Environmental Protection Agency mandates the purchase of oil, paper, tires and building insulation from recycled or re-refined sources whenever possible.[2]

The final government regulation towards increased demand is recycled product labeling. When producers are required to label their packaging with amount of recycled material in the product (including the packaging), consumers are better able to make educated choices. Consumers with sufficient buying power can then choose more environmentally conscious options, prompt producers to increase the amount of recycled material in their products, and indirectly increase demand. Standardized recycling labeling can also have a positive effect on supply of recyclates if the labeling includes information on how and where the product can be recycled.[2]

Recyclates
Recyclate is a raw material that is sent to, and processed in a waste recycling plant or materials recovery facility which will be used to form new products.[13] The material is collected in various methods and delivered to a facility where it undergoes re-manufacturing so that it can used in the production of new materials or products. For example, plastic bottles that are collected can be re-used and made into plastic pellets, a new product.[14]

Quality of recyclate
The quality of recyclates is recognized as one of the principal challenges that needs to be addressed for the success of a long term vision of a green economy and achieving zero waste. Recyclate quality is generally referring to how much of the raw material is made up of target material compared to the amount of non-target material and other non- recyclable material.[15] Only target material is likely to be recycled, so a higher amount of non-target and non-recyclable material will reduce the quantity of recycling product.[15] A high proportion of non-target and non-recyclable material can make it more difficult for re-processors to achieve ‘high-quality’ recycling. If the recyclate is of poor quality, it is more likely to end up being down-cycled or, in more extreme cases, sent to other recovery options or landfill.[15] For example, to facilitate the re-manufacturing of clear glass products there are tight restrictions for colored glass going into the re-melt process.

The quality of recyclate not only supports high quality recycling, it can deliver significant environmental benefits by reducing, reusing, and keeping products out of landfills.[15] High quality recycling can help support growth in the economy by maximizing the economic value of the waste material collected.[15] Higher income levels from the sale of quality recyclates can return value which can be significant to local governments, households and businesses.[15] Pursuing high quality recycling can also provide consumer and business confidence in the waste and resource management sector and may encourage investment in that sector.

There are many actions along the recycling supply chain that can influence and affect the material quality of recyclate.[16] It begins with the waste producers who place non-target and non-recyclable wastes in recycling collection. This can affect the quality of final recyclate streams or require further efforts to discard those materials at later stages in the recycling process.[16] The different collection systems can result in different levels of contamination. Depending on which materials are collected together, extra effort is required to sort this material back into separate streams and can significantly reduce the quality of the final product.[16] Transportation and the compaction of materials can make it more difficult to separate material back into separate waste streams. Sorting facilities are not one hundred per cent effective in separating materials, despite improvements in technology and quality recyclate which can see a loss in recyclate quality.[16] The storage of materials outside where the product can become wet can cause problems for re-processors. Reprocessing facilities may require further sorting steps to further reduce the amount of non-target and non-recyclable material.[16] Each action along the recycling path plays a part in the quality of recyclate.

Quality recyclate action plan (Scotland)
The Recyclate Quality Action Plan of Scotland sets out a number of proposed actions that the Scottish Government would like to take forward in order to drive up the quality of the materials being collected for recycling and sorted at materials recovery facilities before being exported or sold on to the reprocessing market.[16]

The plan’s objectives are to:

Drive up the quality of recyclate.
Deliver greater transparency around the quality of recyclate.
Provide help to those contracting with materials recycling facilities to identify what is required of them
Ensure compliance with the Waste (Scotland) regulations 2012.
Stimulate a household market for quality recyclate.
Address and reduce issues surrounding the Waste Shipment Regulations.
The plan focuses on three key areas, with fourteen actions which were identified to increase the quality of materials collected, sorted and presented to the processing market in Scotland.[17]

The three areas of focus are:

Collection systems and input contamination
Sorting facilities – material sampling and transparency
Material quality benchmarking and standards
Recycling consumer waste
A number of different systems have been implemented to collect recyclates from the general waste stream. These systems lie along the spectrum of trade-off between public convenience and government ease and expense. The three main categories of collection are "drop-off centres," "buy-back centres," and "curbside collection".

Drop-off centres
Drop-off centres require the waste producer to carry the recyclates to a central location, either an installed or mobile collection station or the reprocessing plant itself. They are the easiest type of collection to establish, but suffer from low and unpredictable throughput.

Buy-back centres
Buy-back centres differ in that the cleaned recyclates are purchased, thus providing a clear incentive for use and creating a stable supply. The post-processed material can then be sold on, hopefully creating a profit. Unfortunately, government subsidies are necessary to make buy-back centres a viable enterprise, as according to the United States’ National Waste & Recycling Association, it costs on average US$50 to process a ton of material, which can only be resold for US$30.[2]

Curbside collection
Main article: Curbside collection
Curbside collection encompasses many subtly different systems, which differ mostly on where in the process the recyclates are sorted and cleaned. The main categories are mixed waste collection, commingled recyclables and source separation.[2] A waste collection vehicle generally picks up the waste.
At one end of the spectrum is mixed waste collection, in which all recyclates are collected mixed in with the rest of the waste, and the desired material is then sorted out and cleaned at a central sorting facility. This results in a large amount of recyclable waste, paper especially, being too soiled to reprocess, but has advantages as well: the city need not pay for a separate collection of recyclates and no public education is needed. Any changes to which materials are recyclable is easy to accommodate as all sorting happens in a central location.[2]

In a commingled or single-stream system, all recyclables for collection are mixed but kept separate from other waste. This greatly reduces the need for post-collection cleaning but does require public education on what materials are recyclable.[2][4]

Source separation is the other extreme, where each material is cleaned and sorted prior to collection. This method requires the least post-collection sorting and produces the purest recyclates, but incurs additional operating costs for collection of each separate material. An extensive public education program is also required, which must be successful if recyclate contamination is to be avoided.[2]

Source separation used to be the preferred method due to the high sorting costs incurred by commingled (mixed waste) collection. Advances in sorting technology (see sorting below), however, have lowered this overhead substantially—many areas which had developed source separation programs have since switched to comingled collection.[4]

Distributed Recycling
For some waste materials such as plastic, recent technical devices called recyclebots[18] enable a form of distributed recycling. Preliminary life-cycle analysis(LCA) indicates that such distributed recycling of HDPE to make filament of 3-D printers in rural regions is energetically favorable to either using virgin resin or conventional recycling processes because of reductions in transportation energy[19]

Sorting

Once commingled recyclates are collected and delivered to a central collection facility, the different types of materials must be sorted. This is done in a series of stages, many of which involve automated processes such that a truckload of material can be fully sorted in less than an hour.[4] Some plants can now sort the materials automatically, known as single-stream recycling. In plants a variety of materials are sorted such as paper, different types of plastics, glass, metals, food scraps, and most types of batteries.[20] A 30 percent increase in recycling rates has been seen in the areas where these plants exist.[21]

Initially, the commingled recyclates are removed from the collection vehicle and placed on a conveyor belt spread out in a single layer. Large pieces of corrugated fiberboard and plastic bags are removed by hand at this stage, as they can cause later machinery to jam.

Next, automated machinery separates the recyclates by weight, splitting lighter paper and plastic from heavier glass and metal. Cardboard is removed from the mixed paper, and the most common types of plastic, PET (#1) and HDPE (#2), are collected. This separation is usually done by hand, but has become automated in some sorting centers: a spectroscopic scanner is used to differentiate between different types of paper and plastic based on the absorbed wavelengths, and subsequently divert each material into the proper collection channel.[4]

Strong magnets are used to separate out ferrous metals, such as iron, steel, and tin-plated steel cans ("tin cans"). Nonferrous metals are ejected by magnetic eddy currents in which a rotating magnetic field induces an electric current around the aluminium cans, which in turn creates a magnetic eddy current inside the cans. This magnetic eddy current is repulsed by a large magnetic field, and the cans are ejected from the rest of the recyclate stream.[4]

Finally, glass must be sorted by hand on the basis of its color: brown, amber, green, or clear.[4]

This process of recycling as well as reusing the recycled material proves to be advantageous for many reasons as it reduces amount of waste sent to landfills, conserves natural resources, saves energy, reduces greenhouse gas emissions, and helps create new jobs. Recycled materials can also be converted into new products that can be consumed again such as paper, plastic, and glass.[22]

The City and County of San Francisco’s Department of the Environment offers one of the best recycling programs to support its city-wide goal of Zero Waste by 2020.[23] San Francisco’s refuse hauler, Recology, operates an effective recyclables sorting facility in San Francisco, which helped San Francisco reach a record-breaking diversion rate of 80%.[24]

Recycling industrial waste

Although many government programs are concentrated on recycling at home, a large portion of waste is generated by industry. The focus of many recycling programs done by industry is the cost-effectiveness of recycling. The ubiquitous nature of cardboard packaging makes cardboard a commonly recycled waste product by companies that deal heavily in packaged goods, like retail stores, warehouses, and distributors of goods. Other industries deal in niche or specialized products, depending on the nature of the waste materials that are present.

The glass, lumber, wood pulp, and paper manufacturers all deal directly in commonly recycled materials. However, old rubber tires may be collected and recycled by independent tire dealers for a profit.

Levels of metals recycling are generally low. In 2010, the International Resource Panel, hosted by the United Nations Environment Programme (UNEP) published reports on metal stocks that exist within society[25] and their recycling rates.[26] The Panel reported that the increase in the use of metals during the 20th and into the 21st century has led to a substantial shift in metal stocks from below ground to use in applications within society above ground. For example, the in-use stock of copper in the USA grew from 73 to 238 kg per capita between 1932 and 1999.

The report authors observed that, as metals are inherently recyclable, the metals stocks in society can serve as huge mines above ground (the term "urban mining" has been coined with this idea in mind[27]). However, they found that the recycling rates of many metals are very low. The report warned that the recycling rates of some rare metals used in applications such as mobile phones, battery packs for hybrid cars and fuel cells, are so low that unless future end-of-life recycling rates are dramatically stepped up these critical metals will become unavailable for use in modern technology.

The military recycles some metals. The U.S. Navy’s Ship Disposal Program uses ship breaking to reclaim the steel of old vessels. Ships may also be sunk to create an artificial reef. Uranium is a very dense metal that has qualities superior to lead and titanium for many military and industrial uses. The uranium left over from processing it into nuclear weapons and fuel for nuclear reactors is called depleted uranium, and it is used by all branches of the U.S. military use for armour-piercing shells and shielding.

The construction industry may recycle concrete and old road surface pavement, selling their waste materials for profit.

Some industries, like the renewable energy industry and solar photovoltaic technology in particular, are being proactive in setting up recycling policies even before there is considerable volume to their waste streams, anticipating future demand during their rapid growth.[28]

Recycling of plastics is more difficult, as most programs can’t reach the necessary level of quality. Recycling of PVC often results in downcycling of the material, which means only products of lower quality standard can be made with the recycled material. A new approach which allows an equal level of quality is the Vinyloop process. It was used after the London Olympics 2012 to fulfill the PVC Policy.[29]

e-Waste recycling
Main article: Computer recycling
E-waste is a growing problem, accounting for 20-50 million metric tons of global waste per year according to the EPA. Many recyclers do not recycle e-waste or do not do so responsibly. The e-Stewards certification was created to ensure recyclers are held to the highest standards for environmental responsibility and to give consumers an easy way to identify responsible recyclers. e-Cycle, LLC, was the first mobile recycling company to be e-Stewards certified.

Plastic recycling
Main article: Plastic recycling
Plastic recycling is the process of recovering scrap or waste plastic and reprocessing the material into useful products, sometimes completely different in form from their original state. For instance, this could mean melting down soft drink bottles and then casting them as plastic chairs and tables.[30]

Physical Recycling
Some plastics are remelted to form new plastic objects, for example PET water bottles can be converted into clothing grade polyester. A disadvantage of this type of recycling is that in each use and recycling cycle the molecular weight of the polymer can change further and the levels of unwanted substances in the plastic can increase.

Chemical Recycling
For some polymers it is possible to convert them back into monomers, for example PET can be treated with an alcohol and a catalyst to form a dialkyl terephthalate. The terephthalate diester can be used with ethylene glycol to form a new polyester polymer. Thus it is possible to make the pure polymer again.

Waste Plastic Pyrolysis to fuel oil
Another process involves the conversion of assorted polymers into petroleum by a much less precise thermal depolymerization process. Such a process would be able to accept almost any polymer or mix of polymers, including thermoset materials such as vulcanized rubber tires and the biopolymers in feathers and other agricultural waste. Like natural petroleum, the chemicals produced can be made into fuels as well as polymers. RESEM Technology[31] plant of this type exists in Carthage, Missouri, USA, using turkey waste as input material. Gasification is a similar process, but is not technically recycling since polymers are not likely to become the result. Plastic Pyrolysis can convert petroleum based waste streams such as plastics into quality fuels, carbons. Given below is the list of suitable plastic raw materials for pyrolysis:

Mixed plastic (HDPE, LDPE, PE, PP, Nylon, Teflon, PS, ABS, FRP etc.)
Mixed waste plastic from waste paper mill
Multi Layered Plastic
Recycling codes
Main article: Recycling codes
In order to meet recyclers’ needs while providing manufacturers a consistent, uniform system, a coding system is developed. The recycling code for plastics was introduced in 1988 by plastics industry through the Society of the Plastics Industry, Inc.[32] Because municipal recycling programs traditionally have targeted packaging—primarily bottles and containers—the resin coding system offered a means of identifying the resin content of bottles and containers commonly found in the residential waste stream.

Plastic products are printed with numbers 1–7 depending on the type of resin. Type 1 plastic, PET (or PETE): polyethylene terephthalate, is commonly found in soft drink and water bottles. Type 2, HDPE: high-density polyethylene is found in most hard plastics such as milk jugs, laundry detergent bottles, and some dishware. Type 3, PVC or V (vinyl), includes items like shampoo bottles, shower curtains, hoola hoops, credit cards, wire jacketing, medical equipment, siding, and piping. Type 4, called LDPE, or low-density polyethylene, is found in shopping bags, squeezable bottles, tote bags, clothing, furniture, and carpet. Type 5 is PP which stands for polypropylene and makes up syrup bottles, straws, Tupperware, and some automotive parts. Type 6 is PS: polystyrene and makes up meat trays, egg cartons, clamshell containers and compact disc cases. Type 7 includes all other plastics like bulletproof materials, 3- and 5-gallon water bottles, and sunglasses.[34] Types 1 and 2 are the most commonly recycled.

There is some debate over whether recycling is economically efficient. It is said[by whom?] that dumping 10,000 tons of waste in a landfill creates six jobs, while recycling 10,000 tons of waste can create over 36 jobs. However, the cost effectiveness of creating the additional jobs remains unproven. According to the U.S. Recycling Economic Informational Study, there are over 50,000 recycling establishments that have created over a million jobs in the US.[37] Two years after New York City declared that implementing recycling programs would be "a drain on the city," New York City leaders realized that an efficient recycling system could save the city over $20 million.[38] Municipalities often see fiscal benefits from implementing recycling programs, largely due to the reduced landfill costs.[39] A study conducted by the Technical University of Denmark according to the Economist found that in 83 percent of cases, recycling is the most efficient method to dispose of household waste.[4][9] However, a 2004 assessment by the Danish Environmental Assessment Institute concluded that incineration was the most effective method for disposing of drink containers, even aluminium ones.[40]

Fiscal efficiency is separate from economic efficiency. Economic analysis of recycling do not include what economists call externalities, which are unpriced costs and benefits that accrue to individuals outside of private transactions. Examples include: decreased air pollution and greenhouse gases from incineration, reduced hazardous waste leaching from landfills, reduced energy consumption, and reduced waste and resource consumption, which leads to a reduction in environmentally damaging mining and timber activity. About 4,000 minerals are known, of these only a few hundred minerals in the world are relatively common.[41] Known reserves of phosphorus will be exhausted within the next 100 years at current rates of usage.[42][43] Without mechanisms such as taxes or subsidies to internalize externalities, businesses will ignore them despite the costs imposed on society.[opinion] To make such nonfiscal benefits economically relevant, advocates have pushed for legislative action to increase the demand for recycled materials.[2] The United States Environmental Protection Agency (EPA) has concluded in favor of recycling, saying that recycling efforts reduced the country’s carbon emissions by a net 49 million metric tonnes in 2005.[4] In the United Kingdom, the Waste and Resources Action Programme stated that Great Britain’s recycling efforts reduce CO2 emissions by 10–15 million tonnes a year.[4] Recycling is more efficient in densely populated areas, as there are economies of scale involved.

Certain requirements must be met for recycling to be economically feasible and environmentally effective. These include an adequate source of recyclates, a system to extract those recyclates from the waste stream, a nearby factory capable of reprocessing the recyclates, and a potential demand for the recycled products. These last two requirements are often overlooked—without both an industrial market for production using the collected materials and a consumer market for the manufactured goods, recycling is incomplete and in fact only "collection".[2]

Many[who?] economists favor a moderate level of government intervention to provide recycling services. Economists of this mindset probably view product disposal as an externality of production and subsequently argue government is most capable of alleviating such a dilemma.

Trade in recyclates
Certain countries trade in unprocessed recyclates. Some have complained that the ultimate fate of recyclates sold to another country is unknown and they may end up in landfills instead of reprocessed. According to one report, in America, 50–80 percent of computers destined for recycling are actually not recycled.[44][45] There are reports of illegal-waste imports to China being dismantled and recycled solely for monetary gain, without consideration for workers’ health or environmental damage. Although the Chinese government has banned these practices, it has not been able to eradicate them.[46] In 2008, the prices of recyclable waste plummeted before rebounding in 2009. Cardboard averaged about £53/tonne from 2004–2008, dropped to £19/tonne, and then went up to £59/tonne in May 2009. PET plastic averaged about £156/tonne, dropped to £75/tonne and then moved up to £195/tonne in May 2009.[47] Certain regions have difficulty using or exporting as much of a material as they recycle. This problem is most prevalent with glass: both Britain and the U.S. import large quantities of wine bottled in green glass. Though much of this glass is sent to be recycled, outside the American Midwest there is not enough wine production to use all of the reprocessed material. The extra must be downcycled into building materials or re-inserted into the regular waste stream.[2][4]

Similarly, the northwestern United States has difficulty finding markets for recycled newspaper, given the large number of pulp mills in the region as well as the proximity to Asian markets. In other areas of the U.S., however, demand for used newsprint has seen wide fluctuation.[2]

In some U.S. states, a program called RecycleBank pays people to recycle, receiving money from local municipalities for the reduction in landfill space which must be purchased. It uses a single stream process in which all material is automatically sorted.

Much of the difficulty inherent in recycling comes from the fact that most products are not designed with recycling in mind. The concept of sustainable design aims to solve this problem, and was laid out in the book "Cradle to Cradle: Remaking the Way We Make Things" by architect William McDonough and chemist Michael Braungart. They suggest that every product (and all packaging they require) should have a complete "closed-loop" cycle mapped out for each component—a way in which every component will either return to the natural ecosystem through biodegradation or be recycled indefinitely.[4] While recycling diverts waste from entering directly into landfill sites, current recycling misses the dissipative components. Complete recycling is impracticable as highly dispersed wastes become so diluted that the energy needed for their recovery becomes increasingly excessive. "For example, how will it ever be possible to recycle the numerous chlorinated organic hydrocarbons that have bioaccumulated in animal and human tissues across the globe, the copper dispersed in fungicides, the lead in widely applied paints, or the zinc oxides present in the finely dispersed rubber powder that is abraded from automobile tires?"[50]:260 As with environmental economics, care must be taken to ensure a complete view of the costs and benefits involved. For example, paperboard packaging for food products is more easily recycled than most plastic, but is heavier to ship and may result in more waste from spoilage.[51]

Energy and material flows
The amount of energy saved through recycling depends upon the material being recycled and the type of energy accounting that is used. Emergy (spelled with an m) analysis, for example, budgets for the amount of energy of one kind (exergy) that is required to make or transform things into another kind of product or service. Using emergy life-cycle analysis researchers have concluded that materials with large refining costs have the greatest potential for high recycle benefits. Moreover, the highest emergy efficiency accrues from systems geared toward material recycling, where materials are engineered to recycle back into their original form and purpose, followed by adaptive reuse systems where the materials are recycled into a different kind of product, and then by-product reuse systems where parts of the products are used to make an entirely different product.[52]

The Energy Information Administration (EIA) states on its website that "a paper mill uses 40 percent less energy to make paper from recycled paper than it does to make paper from fresh lumber."[53] Some critics argue that it takes more energy to produce recycled products than it does to dispose of them in traditional landfill methods, since the curbside collection of recyclables often requires a second waste truck. However, recycling proponents point out that a second timber or logging truck is eliminated when paper is collected for recycling, so the net energy consumption is the same. An Emergy life-cycle analysis on recycling revealed that fly ash, aluminum, recycled concrete aggregate, recycled plastic, and steel yield higher efficiency ratios, whereas the recycling of lumber generates the lowest recycle benefit ratio. Hence, the specific nature of the recycling process, the methods used to analyse the process, and the products involved affect the energy savings budgets.[52]

It is difficult to determine the amount of energy consumed or produced in waste disposal processes in broader ecological terms, where causal relations dissipate into complex networks of material and energy flow. For example, "cities do not follow all the strategies of ecosystem development. Biogeochemical paths become fairly straight relative to wild ecosystems, with very reduced recycling, resulting in large flows of waste and low total energy efficiencies. By contrast, in wild ecosystems, one population’s wastes are another population’s resources, and succession results in efficient exploitation of available resources. However, even modernized cities may still be in the earliest stages of a succession that may take centuries or millennia to complete."[54]:720 How much energy is used in recycling also depends on the type of material being recycled and the process used to do so. Aluminium is generally agreed to use far less energy when recycled rather than being produced from scratch. The EPA states that "recycling aluminum cans, for example, saves 95 percent of the energy required to make the same amount of aluminum from its virgin source, bauxite."[55][56] In 2009 more than half of all aluminium cans produced came from recycled aluminium.

Economist Steven Landsburg has suggested that the sole benefit of reducing landfill space is trumped by the energy needed and resulting pollution from the recycling process.[59] Others, however, have calculated through life cycle assessment that producing recycled paper uses less energy and water than harvesting, pulping, processing, and transporting virgin trees.[60] When less recycled paper is used, additional energy is needed to create and maintain farmed forests until these forests are as self-sustainable as virgin forests.

Other studies have shown that recycling in itself is inefficient to perform the “decoupling” of economic development from the depletion of non-renewable raw materials that is necessary for sustainable development.[61] The international transportation or recycle material flows through "…different trade networks of the three countries result in different flows, decay rates, and potential recycling returns."[62]:1 As global consumption of a natural resources grows, its depletion is inevitable. The best recycling can do is to delay, complete closure of material loops to achieve 100 percent recycling of nonrenewables is impossible as micro-trace materials dissipate into the environment causing severe damage to the planet’s ecosystems.[63][64][65] Historically, this was identified as the metabolic rift by Karl Marx, who identified the unequal exchange rate between energy and nutrients flowing from rural areas to feed urban cities that create effluent wastes degrading the planet’s ecological capital, such as loss in soil nutrient production.[66][67] Energy conservation also leads to what is known as Jevon’s paradox, where improvements in energy efficiency lowers the cost of production and leads to a rebound effect where rates of consumption and economic growth increases.

The amount of money actually saved through recycling depends on the efficiency of the recycling program used to do it. The Institute for Local Self-Reliance argues that the cost of recycling depends on various factors around a community that recycles, such as landfill fees and the amount of disposal that the community recycles. It states that communities start to save money when they treat recycling as a replacement for their traditional waste system rather than an add-on to it and by "redesigning their collection schedules and/or trucks."[69]

In some cases, the cost of recyclable materials also exceeds the cost of raw materials. Virgin plastic resin costs 40 percent less than recycled resin.[70] Additionally, a United States Environmental Protection Agency (EPA) study that tracked the price of clear glass from July 15 to August 2, 1991, found that the average cost per ton ranged from $40 to $60,[71] while a USGS report shows that the cost per ton of raw silica sand from years 1993 to 1997 fell between $17.33 and $18.10.[72]

In a 1996 article for The New York Times, John Tierney argued that it costs more money to recycle the trash of New York City than it does to dispose of it in a landfill. Tierney argued that the recycling process employs people to do the additional waste disposal, sorting, inspecting, and many fees are often charged because the processing costs used to make the end product are often more than the profit from its sale.[73] Tierney also referenced a study conducted by the Solid Waste Association of North America (SWANA) that found in the six communities involved in the study, "all but one of the curbside recycling programs, and all the composting operations and waste-to-energy incinerators, increased the cost of waste disposal."[74]

Tierney also points out that "the prices paid f

Posted by !!! Painting with Light !!! #schauer on 2014-09-18 19:11:53

Tagged: , Schauer Christian , Oberdiendorf , Hauzenberg , Passau , Bayern , Bavaria , Deutschland , Germany , Apple , Apfel , Tractot , Vehicle , Bulldog , Landwirtschaft , Trink , Drink , World , Europe , Wheel , Track , Baum , Tree , Natur , Nature , Landscape , Black and White , Dark , Schwarz , Weiß , Harvest , Ernte , Autumn , Fall , Herbst , Lese , Crape , Fruit , Wine , Wein , Österreich , Bunt , Color , Colorkey , Key , Farm , Bauer , Landwirt , Agrar , Agro , Deutz , John , Fend , Saft , Nuit , Summer , Season , Glas , Bottle , Obst , Vegetable , Health , Clear , Klar , Madow , Outdoor , Nice , Canon , Tamron , EOS , Lightroom , Adobe , Kiste , Box , Android , Pommes