HOSTAL SIGN IN MADRID SPAIN

HOSTAL SIGN IN MADRID SPAIN

Photo taken by Linden Hudson (amateur photographer) in Madrid Spain (in November 2018).

Who is Linden Hudson?

CLASSICBANDS DOT COM said: “According to former roadie David Blayney in his book SHARP DRESSED MEN: sound engineer Linden Hudson co-wrote much of the material on the ZZ Top ELIMINATOR album.” (end quote)

(ZZ Top never opted to give Linden credit, which would have been THE decent thing to do. It would have helped Linden’s career as well. The band and management worked ruthlessly to take FULL credit for the hugely successful album which Linden had spent a good deal of time working on. Linden works daily to tell this story. Also, the band did not opt to pay Linden, they worked to keep all the money and they treated Linden like dirt. It was abuse. Linden launched a limited lawsuit, brought about using his limited resources which brought limited results and took years. No one should treat the co-writer of their most successful album like this. It’s just deeply fucked up.)
+++
Hear the original ZZ Top ELIMINATOR writing/rehearsal tapes made by Linden Hudson and Billy Gibbons at: www.flickr.com/photos/152350852@N02/35711891332/in/photol...
+++
Read Linden’s story of the making of the super-famous ZZ Top ELIMINATOR album at: www.flickr.com/people/152350852@N02/
+++
LICKLIBRARY DOT COM (2013 Billy Gibbons interview) ZZ TOP’S BILLY GIBBONS FINALLY ADMITTED: “the Eliminator sessions in 1983 were guided largely by another one of our associates, Linden Hudson, a gifted engineer, during the development of those compositions.” (end quote) (Gibbons admits this after 30 years, but offers Linden no apology or reparations for lack of credit/royalties)
+++
MUSICRADAR DOT COM (2013 interview with ZZ Top’s guitarist Billy Gibbons broke 30 years of silence about Linden Hudson introducing synthesizers into ZZ Top’s sound.) Gibbons said: “This was a really interesting turning point. We had befriended somebody who would become an influential associate, a guy named Linden Hudson. He was a gifted songwriter and had production skills that were leading the pack at times. He brought some elements to the forefront that helped reshape what ZZ Top were doing, starting in the studio and eventually to the live stage. Linden had no fear and was eager to experiment in ways that would frighten most bands. But we followed suit, and the synthesizers started to show up on record.” (once again, there was no apology from ZZ Top or Billy Gibbons after this revelation).
+++
TEXAS MONTHLY MAGAZINE (Dec 1996, By Joe Nick Patoski): "Linden Hudson floated the notion that the ideal dance music had 124 beats per minute; then he and Gibbons conceived, wrote, and recorded what amounted to a rough draft of an album before the band had set foot inside Ardent Studios."
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP (By David Blayney) : "Probably the most dramatic development in ZZ Top recording approaches came about as Eliminator was constructed. What had gone on before evolutionary; this change was revolutionary. ZZ Top got what amounted to a new bandsman (Linden) for the album, unknown to the world at large and at first even to Dusty and Frank."
+++
CNET DOT COM: (question posed to ZZ Top): Sound engineer Linden Hudson was described as a high-tech music teacher on your highly successful "Eliminator" album. How much did the band experiment with electronic instruments prior to that album?
+++
THE HOUSTON CHRONICLE, MARCH 2018: "Eliminator" had a tremendous impact on us and the people who listen to us," says ZZ Top’s bass player. Common band lore points to production engineer Linden Hudson suggesting that 120 beats per minute was the perfect rock tempo, or "the people’s tempo" as it came to be known.
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP by David Blayney: (page 227): "…the song LEGS Linden Hudson introduced the pumping synthesizer effect."
+++
(Search Linden Hudson in the various ZZ Top Wikipedia pages which are related to the ELIMINATOR album and you will find bits about Linden. Also the main ZZ Top Wikipedia page mentions Linden. He’s mentioned in at least 7 ZZ Top related Wikipedia pages.)
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP By David Blayney: "Linden found himself in the position of being Billy’s (Billy Gibbons, ZZ Top guitarist) closest collaborator on Eliminator. In fact, he wound up spending more time on the album than anybody except Billy. While the two of them spent day after day in the studio, they were mostly alone with the equipment and the ideas."
+++
FROM THE BOOK: BEER DRINKERS & HELL RAISERS: A ZZ TOP GUIDE (By Neil Daniels, released 2014): "Hudson reportedly had a significant role to play during the planning stages of the release (ELIMINATOR)."
+++
FROM THE BOOK: ZZ TOP – BAD AND WORLDWIDE (ROLLING STONE PRESS, WRITTEN BY DEBORAH FROST): "Linden was always doing computer studies. It was something that fascinated him, like studio technology. He thought he might understand the components of popular songs better if he fed certain data into his computer. It might help him understand what hits (song releases) of any given period share. He first found out about speed; all the songs he studied deviated no more than one beat from 120 beats per minute. Billy immediately started to write some songs with 120 beats per minute. Linden helped out with a couple, like UNDER PRESSURE and SHARP DRESSED MAN. Someone had to help Billy out. Dusty and Frank didn’t even like to rehearse much. Their studio absence wasn’t really a problem though. The bass and drum parts were easily played with a synthesizer or Linn drum machine." (end quote)
+++
FROM THE BOOK: "SHARP DRESSED MEN – ZZ TOP" BY DAVID BLAYNEY: "After his quantitative revelations, Linden informally but instantly became ZZ Top’s rehearsal hall theoretician, producer, and engineer." (end quote)
+++
FROM THE BOOK: "ZZ TOP – BAD AND WORLDWIDE" (ROLLING STONE PRESS, BY DEBORAH FROST): "With the release of their ninth album, ELIMINATOR, in 1983, these hairy, unlikely rock heroes had become a pop phenomenon. This had something to do with the discoveries of a young preproduction engineer (Linden Hudson) whose contributions, like those of many associated with the band over the years, were never acknowledged."
+++
FROM THE BOOK: ​SHARP DRESSED MEN – ZZ TOP (By DAVID BLAYNEY) : "The integral position Linden occupied in the process of building El​iminator was demonstrated eloquently in the case of song Under Pressure. Billy and Linden, the studio wizards, did the whole song all in one afternoon without either the bass player or drummer even knowing it had been written and recorded on a demo tape. Linden synthesized the bass and drums and helped write the lyrics; Billy did the guitars and vocals."
+++
FROM THE BOOK: "TRES HOMBRES – THE STORY OF ZZ TOP" BY DAVID SINCLAIR (Writer for the Times Of London): "Linden Hudson, the engineer/producer who lived at Beard’s house (ZZ’s drummer) had drawn their attention to the possibilities of the new recording technology and specifically to the charms of the straight drumming pattern, as used on a programmed drum machine. On ELIMINATOR ZZ Top unveiled a simple new musical combination that cracked open a vast worldwide market.
+++
FROM THE BOOK: "SHARP DRESS MEN – ZZ TOP" BY DAVID BLAYNEY: "ELIMINATOR went on to become a multi-platinum album, just as Linden had predicted when he and Billy were setting up the 124-beat tempos and arranging all the material. Rolling Stone eventually picked the album as number 39 out of the top 100 of the 80’s. Linden Hudson in a fair world shoud have had his name all over ELIMINATOR and gotten the just compensation he deserved. Instead he got ostracized."
+++
FROM THE BOOK: ​SHARP DRESSED MEN – ZZ TOP by DAVID BLAYNEY: "He (Linden) went back with the boys to 1970 when he was working as a radio disc jocky aliased Jack Smack. He was emcee for a show ZZ did around that time, and even sang an encore tune with the band, perhaps the only person ever to have that honor." (side note: this was ZZ Top’s very first show).
+++
FROM THE BOOK: "SHARP DRESSED MEN – ZZ TOP" BY DAVID BLAYNEY: "Linden remained at Frank’s (ZZ Top drummer) place as ZZ’s live-in engineer throughout the whole period of ELIMINATOR rehearsals, and was like one of the family… as he (Linden) worked at the controls day after day, watching the album (ELIMINATOR) take shape, his hopes for a big step forward in his production career undoubtably soared. ELIMINATOR marked the first time that ZZ Top was able to rehearse an entire album with the recording studio gadgetry that Billy so loved. With Linden Hudson around all the time, it also was the first time the band could write, rehearse, and record with someone who knew the men and the machines. ZZ Top was free to go musically crazy, but also musically crazy like a fox. Linden made that possible too."
+++
FROM THE BOOK "ZZ TOP – BAD AND WORLDWIDE" (ROLLING STONE PRESS, BY DEBORAH FROST, WRITER FOR ROLLING STONE MAGAZINE): "… SHARP DRESSED MAN which employed Hudson’s 120 beat-per-minute theory. The feel, the enthusiasm, the snappy beat and crisp clean sound propelled ELIMINATOR into the ears and hearts of 5 million people who previously could have cared less about the boogie band of RIO GRANDE MUD."
+++
THE GREATEST ROCK REBRAND OF ALL TIME (by Jason Miller): "Sound engineer Linden Hudson researched the tempos at which the most popular rock tracks in the charts had been recorded. His data showed that there was something very special about 120 beats to a minute. Gibbons decided to record pretty much the whole of ZZ Top’s new album at that tempo. The result? 1983’s Eliminator. It was named after Gibbons’ Ford Coupé; it had been created through a unique combination of creative collaboration and data mining. And it was about to take the world by storm."
+++
ULTIMATECLASSICROCK DOT COM: "This new melding of styles was encouraged by Hudson, who served as a kind of pre-producer for ​EL LOCO … … Hudson helped construct ZZ Top drummer Frank Beard’s home studio, and had lived with him for a time. That led to these initial sessions, and then a closer collaboration on 1983’s ​ELIMINATOR.
+++
FIREDOGLAKE DOT COM: "I like Billy Gibbons’ guitar tone quite a lot, but I lost all respect for them after reading how badly they fucked over Linden Hudson (the guy who was the brains behind their move to include synthesizers and co-wrote most of their career-defining Eliminator record)."
+++
EMAIL FROM A ZZ TOP FAN TO LINDEN (One Of Many): "I write you today about broken hearts, one is mine and one is for you. I have been a ZZ Top fan since I was 6 years old. I purchased ELIMINATOR vinyl from Caldors in Connecticut with the $20 my grandma gave me for my birthday. I will spare the #1 fan epic saga of tee shirts, harassing Noreen at the fan club via phone weekly for years, over 40 shows attended. Posters, non stop conversation about the time I have spent idolizing this band, but more Billy G, as he has seemed to break free of the Lone Wolf shackles and it became more clear this was his baby. In baseball I was Don Mattingly’s #1 fan, Hershel Walker in football, Billy Gibbons in music. What do these individuals have in common? They were role models. Not a DUI, not a spousal abuse, not a drug overdose, not a cheater. Until I read your web page. I read Blayney’s book around 1992 or so, I was in middle school and I was familiar with your name for a long time. I didn’t realize you suffered so greatly or that your involvement was so significant. It pains me to learn my idol not only cheated but did something so wrong to another being. I now know this is where tall tales and fun loving bullshit and poor morals and ethics are distinguished and where I would no longer consider myself to look up to Billy. I love to joke and I love credit but I have always prided myself on ethics and principles… I hold them dear. I wanted to say, the snippet of UNDER PRESSURE you played sounded very new wave and I may like it more than the finished product. Well that’s all. You have reached ZZ Top’s biggest fan and I can let others know. Bummer. Cheers and good luck. James."​
+++
VINYLSTYLUS DOT COM: Much of Eliminator was recorded at 124bpm, the tempo that considered perfect for dance music by the band’s associate Linden Hudson. An aspiring songwriter, former DJ and – at the time – drummer Frank Beard’s house-sitter, Hudson’s involvement in the recording of the album would come back to haunt them. Despite assisting Gibbons with the pre-production and developing of the material that would end up on both El Loco and Eliminator, his contribution wasn’t credited when either record was released.
+++
INFOMORY DOT COM: ‘Eliminator’ is a studio album of the American rock band ZZ Top. It was released on March 23, 1983 and topped the charts worldwide. Its lyrics were co-written by the band’s sound engineer Linden Hudson while the band denied it.
+++
MUSICMISCELLANEOUS DOT COM: (ELIMINATOR ALBUM):
However, despite the album credits bass-player Dusty Hill and drummer Frank Beard were replaced during the recording process by synthesizers and a drum machine programmed by engineer Linden Hudson, who allegedly co-wrote much of the music with Gibbons despite receiving no credit at the time. Gibbons would later say of Hudson that “he was a gifted songwriter and had production skills that were leading the pack at times. He brought some elements to the forefront that helped reshape what ZZ Top were doing”. Hudson did no less than show the band how to stay relevant in an age where three guys from Texas with long beards (except famously for Frank Beard) and blues licks were one of the last things the contemporary market was demanding.

Posted by lindenhud1 on 2018-11-25 22:28:27

Tagged: , sign , hostal sign , madrid , spain , madrid spain , europe , night , night time , outdoor , outdoor sign

ROCK & ROLL CONCERT – PRAGUE, PRAHA

ROCK & ROLL CONCERT - PRAGUE, PRAHA

Photo taken by Linden Hudson (amateur photographer, traveler, sometimes vagabond, Texas backpacker) in Prague in 2009. Linden enjoyed Prague (pretty girls, great beer, good food).

Who is Linden Hudson?

CLASSICBANDS DOT COM said: “According to former roadie David Blayney in his book SHARP DRESSED MEN: sound engineer Linden Hudson co-wrote much of the material on the ZZ Top ELIMINATOR album.” (end quote)

(ZZ Top never opted to give Linden credit, which would have been THE decent thing to do. It would have helped Linden’s career as well. The band and management worked ruthlessly to take FULL credit for the hugely successful album which Linden had spent a good deal of time working on. Linden works daily to tell this story. Also, the band did not opt to pay Linden, they worked to keep all the money and they treated Linden like dirt. It was abuse. Linden launched a limited lawsuit, brought about using his limited resources which brought limited results and took years. No one should treat the co-writer of their most successful album like this. It’s just deeply fucked up.)
+++
Hear the original ZZ Top ELIMINATOR writing/rehearsal tapes made by Linden Hudson and Billy Gibbons at: www.flickr.com/photos/152350852@N02/35711891332/in/photol...
+++
Read Linden’s story of the making of the super-famous ZZ Top ELIMINATOR album at: www.flickr.com/people/152350852@N02/
+++
LICKLIBRARY DOT COM (2013 Billy Gibbons interview) ZZ TOP’S BILLY GIBBONS FINALLY ADMITTED: “the Eliminator sessions in 1983 were guided largely by another one of our associates, Linden Hudson, a gifted engineer, during the development of those compositions.” (end quote) (Gibbons admits this after 30 years, but offers Linden no apology or reparations for lack of credit/royalties)
+++
MUSICRADAR DOT COM (2013 interview with ZZ Top’s guitarist Billy Gibbons broke 30 years of silence about Linden Hudson introducing synthesizers into ZZ Top’s sound.) Gibbons said: “This was a really interesting turning point. We had befriended somebody who would become an influential associate, a guy named Linden Hudson. He was a gifted songwriter and had production skills that were leading the pack at times. He brought some elements to the forefront that helped reshape what ZZ Top were doing, starting in the studio and eventually to the live stage. Linden had no fear and was eager to experiment in ways that would frighten most bands. But we followed suit, and the synthesizers started to show up on record.” (once again, there was no apology from ZZ Top or Billy Gibbons after this revelation).
+++
TEXAS MONTHLY MAGAZINE (Dec 1996, By Joe Nick Patoski): "Linden Hudson floated the notion that the ideal dance music had 124 beats per minute; then he and Gibbons conceived, wrote, and recorded what amounted to a rough draft of an album before the band had set foot inside Ardent Studios."
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP (By David Blayney) : "Probably the most dramatic development in ZZ Top recording approaches came about as Eliminator was constructed. What had gone on before evolutionary; this change was revolutionary. ZZ Top got what amounted to a new bandsman (Linden) for the album, unknown to the world at large and at first even to Dusty and Frank."
+++
CNET DOT COM: (question posed to ZZ Top): Sound engineer Linden Hudson was described as a high-tech music teacher on your highly successful "Eliminator" album. How much did the band experiment with electronic instruments prior to that album?
+++
THE HOUSTON CHRONICLE, MARCH 2018: "Eliminator" had a tremendous impact on us and the people who listen to us," says ZZ Top’s bass player. Common band lore points to production engineer Linden Hudson suggesting that 120 beats per minute was the perfect rock tempo, or "the people’s tempo" as it came to be known.
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP by David Blayney: (page 227): "…the song LEGS Linden Hudson introduced the pumping synthesizer effect."
+++
(Search Linden Hudson in the various ZZ Top Wikipedia pages which are related to the ELIMINATOR album and you will find bits about Linden. Also the main ZZ Top Wikipedia page mentions Linden. He’s mentioned in at least 7 ZZ Top related Wikipedia pages.)
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP By David Blayney: "Linden found himself in the position of being Billy’s (Billy Gibbons, ZZ Top guitarist) closest collaborator on Eliminator. In fact, he wound up spending more time on the album than anybody except Billy. While the two of them spent day after day in the studio, they were mostly alone with the equipment and the ideas."
+++
FROM THE BOOK: BEER DRINKERS & HELL RAISERS: A ZZ TOP GUIDE (By Neil Daniels, released 2014): "Hudson reportedly had a significant role to play during the planning stages of the release (ELIMINATOR)."
+++
FROM THE BOOK: ZZ TOP – BAD AND WORLDWIDE (ROLLING STONE PRESS, WRITTEN BY DEBORAH FROST): "Linden was always doing computer studies. It was something that fascinated him, like studio technology. He thought he might understand the components of popular songs better if he fed certain data into his computer. It might help him understand what hits (song releases) of any given period share. He first found out about speed; all the songs he studied deviated no more than one beat from 120 beats per minute. Billy immediately started to write some songs with 120 beats per minute. Linden helped out with a couple, like UNDER PRESSURE and SHARP DRESSED MAN. Someone had to help Billy out. Dusty and Frank didn’t even like to rehearse much. Their studio absence wasn’t really a problem though. The bass and drum parts were easily played with a synthesizer or Linn drum machine." (end quote)
+++
FROM THE BOOK: "SHARP DRESSED MEN – ZZ TOP" BY DAVID BLAYNEY: "After his quantitative revelations, Linden informally but instantly became ZZ Top’s rehearsal hall theoretician, producer, and engineer." (end quote)
+++
FROM THE BOOK: "ZZ TOP – BAD AND WORLDWIDE" (ROLLING STONE PRESS, BY DEBORAH FROST): "With the release of their ninth album, ELIMINATOR, in 1983, these hairy, unlikely rock heroes had become a pop phenomenon. This had something to do with the discoveries of a young preproduction engineer (Linden Hudson) whose contributions, like those of many associated with the band over the years, were never acknowledged."
+++
FROM THE BOOK: ​SHARP DRESSED MEN – ZZ TOP (By DAVID BLAYNEY) : "The integral position Linden occupied in the process of building El​iminator was demonstrated eloquently in the case of song Under Pressure. Billy and Linden, the studio wizards, did the whole song all in one afternoon without either the bass player or drummer even knowing it had been written and recorded on a demo tape. Linden synthesized the bass and drums and helped write the lyrics; Billy did the guitars and vocals."
+++
FROM THE BOOK: "TRES HOMBRES – THE STORY OF ZZ TOP" BY DAVID SINCLAIR (Writer for the Times Of London): "Linden Hudson, the engineer/producer who lived at Beard’s house (ZZ’s drummer) had drawn their attention to the possibilities of the new recording technology and specifically to the charms of the straight drumming pattern, as used on a programmed drum machine. On ELIMINATOR ZZ Top unveiled a simple new musical combination that cracked open a vast worldwide market.
+++
FROM THE BOOK: "SHARP DRESS MEN – ZZ TOP" BY DAVID BLAYNEY: "ELIMINATOR went on to become a multi-platinum album, just as Linden had predicted when he and Billy were setting up the 124-beat tempos and arranging all the material. Rolling Stone eventually picked the album as number 39 out of the top 100 of the 80’s. Linden Hudson in a fair world shoud have had his name all over ELIMINATOR and gotten the just compensation he deserved. Instead he got ostracized."
+++
FROM THE BOOK: ​SHARP DRESSED MEN – ZZ TOP by DAVID BLAYNEY: "He (Linden) went back with the boys to 1970 when he was working as a radio disc jocky aliased Jack Smack. He was emcee for a show ZZ did around that time, and even sang an encore tune with the band, perhaps the only person ever to have that honor." (side note: this was ZZ Top’s very first show).
+++
FROM THE BOOK: "SHARP DRESSED MEN – ZZ TOP" BY DAVID BLAYNEY: "Linden remained at Frank’s (ZZ Top drummer) place as ZZ’s live-in engineer throughout the whole period of ELIMINATOR rehearsals, and was like one of the family… as he (Linden) worked at the controls day after day, watching the album (ELIMINATOR) take shape, his hopes for a big step forward in his production career undoubtably soared. ELIMINATOR marked the first time that ZZ Top was able to rehearse an entire album with the recording studio gadgetry that Billy so loved. With Linden Hudson around all the time, it also was the first time the band could write, rehearse, and record with someone who knew the men and the machines. ZZ Top was free to go musically crazy, but also musically crazy like a fox. Linden made that possible too."
+++
FROM THE BOOK "ZZ TOP – BAD AND WORLDWIDE" (ROLLING STONE PRESS, BY DEBORAH FROST, WRITER FOR ROLLING STONE MAGAZINE): "… SHARP DRESSED MAN which employed Hudson’s 120 beat-per-minute theory. The feel, the enthusiasm, the snappy beat and crisp clean sound propelled ELIMINATOR into the ears and hearts of 5 million people who previously could have cared less about the boogie band of RIO GRANDE MUD."
+++
THE GREATEST ROCK REBRAND OF ALL TIME (by Jason Miller): "Sound engineer Linden Hudson researched the tempos at which the most popular rock tracks in the charts had been recorded. His data showed that there was something very special about 120 beats to a minute. Gibbons decided to record pretty much the whole of ZZ Top’s new album at that tempo. The result? 1983’s Eliminator. It was named after Gibbons’ Ford Coupé; it had been created through a unique combination of creative collaboration and data mining. And it was about to take the world by storm."
+++
ULTIMATECLASSICROCK DOT COM: "This new melding of styles was encouraged by Hudson, who served as a kind of pre-producer for ​EL LOCO … … Hudson helped construct ZZ Top drummer Frank Beard’s home studio, and had lived with him for a time. That led to these initial sessions, and then a closer collaboration on 1983’s ​ELIMINATOR.
+++
FIREDOGLAKE DOT COM: "I like Billy Gibbons’ guitar tone quite a lot, but I lost all respect for them after reading how badly they fucked over Linden Hudson (the guy who was the brains behind their move to include synthesizers and co-wrote most of their career-defining Eliminator record)."
+++
EMAIL FROM A ZZ TOP FAN TO LINDEN (One Of Many): "I write you today about broken hearts, one is mine and one is for you. I have been a ZZ Top fan since I was 6 years old. I purchased ELIMINATOR vinyl from Caldors in Connecticut with the $20 my grandma gave me for my birthday. I will spare the #1 fan epic saga of tee shirts, harassing Noreen at the fan club via phone weekly for years, over 40 shows attended. Posters, non stop conversation about the time I have spent idolizing this band, but more Billy G, as he has seemed to break free of the Lone Wolf shackles and it became more clear this was his baby. In baseball I was Don Mattingly’s #1 fan, Hershel Walker in football, Billy Gibbons in music. What do these individuals have in common? They were role models. Not a DUI, not a spousal abuse, not a drug overdose, not a cheater. Until I read your web page. I read Blayney’s book around 1992 or so, I was in middle school and I was familiar with your name for a long time. I didn’t realize you suffered so greatly or that your involvement was so significant. It pains me to learn my idol not only cheated but did something so wrong to another being. I now know this is where tall tales and fun loving bullshit and poor morals and ethics are distinguished and where I would no longer consider myself to look up to Billy. I love to joke and I love credit but I have always prided myself on ethics and principles… I hold them dear. I wanted to say, the snippet of UNDER PRESSURE you played sounded very new wave and I may like it more than the finished product. Well that’s all. You have reached ZZ Top’s biggest fan and I can let others know. Bummer. Cheers and good luck. James."​
+++
VINYLSTYLUS DOT COM: Much of Eliminator was recorded at 124bpm, the tempo that considered perfect for dance music by the band’s associate Linden Hudson. An aspiring songwriter, former DJ and – at the time – drummer Frank Beard’s house-sitter, Hudson’s involvement in the recording of the album would come back to haunt them. Despite assisting Gibbons with the pre-production and developing of the material that would end up on both El Loco and Eliminator, his contribution wasn’t credited when either record was released.
+++
INFOMORY DOT COM: ‘Eliminator’ is a studio album of the American rock band ZZ Top. It was released on March 23, 1983 and topped the charts worldwide. Its lyrics were co-written by the band’s sound engineer Linden Hudson while the band denied it.
+++
MUSICMISCELLANEOUS DOT COM: (ELIMINATOR ALBUM):
However, despite the album credits bass-player Dusty Hill and drummer Frank Beard were replaced during the recording process by synthesizers and a drum machine programmed by engineer Linden Hudson, who allegedly co-wrote much of the music with Gibbons despite receiving no credit at the time. Gibbons would later say of Hudson that “he was a gifted songwriter and had production skills that were leading the pack at times. He brought some elements to the forefront that helped reshape what ZZ Top were doing”. Hudson did no less than show the band how to stay relevant in an age where three guys from Texas with long beards (except famously for Frank Beard) and blues licks were one of the last things the contemporary market was demanding.

Posted by lindenhud1 on 2018-08-26 13:56:05

Tagged: , band , music , musicians , pop , pop show , rock show , rock and roll , people , stage , color , lights , stage_lights , europe , czech , czech_republic , colors , interesting , singer , on-stage , cheap_sunglasses , entertainment , praha , prag , concert , outdoor , outdoor_concert

CAFE IN VENICE AT NIGHT – B&W

CAFE IN VENICE AT NIGHT - B&W

Photo taken in Venice Italy (March 2017).

Who is Linden Hudson?

CLASSICBANDS DOT COM said: “According to former roadie David Blayney in his book SHARP DRESSED MEN: sound engineer Linden Hudson co-wrote much of the material on the ZZ Top ELIMINATOR album.” (end quote)

(ZZ Top never opted to give Linden credit, which would have been THE decent thing to do. It would have helped Linden’s career as well. The band and management worked ruthlessly to take FULL credit for the hugely successful album which Linden had spent a good deal of time working on. Linden works daily to tell this story. Also, the band did not opt to pay Linden, they worked to keep all the money and they treated Linden like dirt. It was abuse. Linden launched a limited lawsuit, brought about using his limited resources which brought limited results and took years. No one should treat the co-writer of their most successful album like this. It’s just deeply fucked up.)
+++
(see full story at Linden’s website: www.linden-hudson.com/birth-of-the-zz-top-eliminator-album )
+++
Hear the original ZZ Top ELIMINATOR writing/rehearsal tapes made by Linden Hudson and Billy Gibbons at: www.flickr.com/photos/152350852@N02/35711891332/in/photol…
+++
LICKLIBRARY DOT COM (2013 interview) ZZ TOP’S BILLY GIBBONS SAID: “the Eliminator sessions in 1983 were guided largely by another one of our associates, Linden Hudson, a gifted engineer, during the development of those compositions.” (end quote) (Gibbons admits this after 30 years, but offers Linden no apology or reparations for lack of credit/royalties)
+++
MUSICRADAR DOT COM (2013 interview with ZZ Top’s guitarist Billy Gibbons broke 30 years of silence about Linden Hudson introducing synthesizers into ZZ Top’s sound.) Gibbons said: “This was a really interesting turning point. We had befriended somebody who would become an influential associate, a guy named Linden Hudson. He was a gifted songwriter and had production skills that were leading the pack at times. He brought some elements to the forefront that helped reshape what ZZ Top were doing, starting in the studio and eventually to the live stage. Linden had no fear and was eager to experiment in ways that would frighten most bands. But we followed suit, and the synthesizers started to show up on record.” (once again, there was no apology from ZZ Top or Billy Gibbons after this revelation).
+++
TEXAS MONTHLY MAGAZINE (Dec 1996, By Joe Nick Patoski): "Linden Hudson floated the notion that the ideal dance music had 124 beats per minute; then he and Gibbons conceived, wrote, and recorded what amounted to a rough draft of an album before the band had set foot inside Ardent Studios."
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP (By David Blayney) : "Probably the most dramatic development in ZZ Top recording approaches came about as Eliminator was constructed. What had gone on before evolutionary; this change was revolutionary. ZZ Top got what amounted to a new bandsman (Linden) for the album, unknown to the world at large and at first even to Dusty and Frank."
+++
CNET DOT COM: (question posed to ZZ Top): Sound engineer Linden Hudson was described as a high-tech music teacher on your highly successful "Eliminator" album. How much did the band experiment with electronic instruments prior to that album?
+++
THE HOUSTON CHRONICLE, MARCH 2018: "Eliminator" had a tremendous impact on us and the people who listen to us," says ZZ Top’s bass player. Common band lore points to production engineer Linden Hudson suggesting that 120 beats per minute was the perfect rock tempo, or "the people’s tempo" as it came to be known.
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP by David Blayney: (page 227): "…the song LEGS Linden Hudson introduced the pumping synthesizer effect."
+++
(Search Linden Hudson in the various ZZ Top Wikipedia pages which are related to the ELIMINATOR album and you will find bits about Linden. Also the main ZZ Top Wikipedia page mentions Linden. He’s mentioned in at least 7 ZZ Top related Wikipedia pages.)
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP By David Blayney: "Linden found himself in the position of being Billy’s (Billy Gibbons, ZZ Top guitarist) closest collaborator on Eliminator. In fact, he wound up spending more time on the album than anybody except Billy. While the two of them spent day after day in the studio, they were mostly alone with the equipment and the ideas."
+++
FROM THE BOOK: BEER DRINKERS & HELL RAISERS: A ZZ TOP GUIDE (By Neil Daniels, released 2014): "Hudson reportedly had a significant role to play during the planning stages of the release (ELIMINATOR)."
+++
FROM THE BOOK: ZZ TOP – BAD AND WORLDWIDE (ROLLING STONE PRESS, WRITTEN BY DEBORAH FROST): "Linden was always doing computer studies. It was something that fascinated him, like studio technology. He thought he might understand the components of popular songs better if he fed certain data into his computer. It might help him understand what hits (song releases) of any given period share. He first found out about speed; all the songs he studied deviated no more than one beat from 120 beats per minute. Billy immediately started to write some songs with 120 beats per minute. Linden helped out with a couple, like UNDER PRESSURE and SHARP DRESSED MAN. Someone had to help Billy out. Dusty and Frank didn’t even like to rehearse much. Their studio absence wasn’t really a problem though. The bass and drum parts were easily played with a synthesizer or Linn drum machine." (end quote)
+++
FROM THE BOOK: "SHARP DRESSED MEN – ZZ TOP" BY DAVID BLAYNEY: "After his quantitative revelations, Linden informally but instantly became ZZ Top’s rehearsal hall theoretician, producer, and engineer." (end quote)
+++
FROM THE BOOK: "ZZ TOP – BAD AND WORLDWIDE" (ROLLING STONE PRESS, BY DEBORAH FROST): "With the release of their ninth album, ELIMINATOR, in 1983, these hairy, unlikely rock heroes had become a pop phenomenon. This had something to do with the discoveries of a young preproduction engineer (Linden Hudson) whose contributions, like those of many associated with the band over the years, were never acknowledged."
+++
FROM THE BOOK: ​SHARP DRESSED MEN – ZZ TOP (By DAVID BLAYNEY) : "The integral position Linden occupied in the process of building El​iminator was demonstrated eloquently in the case of song Under Pressure. Billy and Linden, the studio wizards, did the whole song all in one afternoon without either the bass player or drummer even knowing it had been written and recorded on a demo tape. Linden synthesized the bass and drums and helped write the lyrics; Billy did the guitars and vocals."
+++
FROM THE BOOK: "TRES HOMBRES – THE STORY OF ZZ TOP" BY DAVID SINCLAIR (Writer for the Times Of London): "Linden Hudson, the engineer/producer who lived at Beard’s house (ZZ’s drummer) had drawn their attention to the possibilities of the new recording technology and specifically to the charms of the straight drumming pattern, as used on a programmed drum machine. On ELIMINATOR ZZ Top unveiled a simple new musical combination that cracked open a vast worldwide market.
+++
FROM THE BOOK: "SHARP DRESS MEN – ZZ TOP" BY DAVID BLAYNEY: "ELIMINATOR went on to become a multi-platinum album, just as Linden had predicted when he and Billy were setting up the 124-beat tempos and arranging all the material. Rolling Stone eventually picked the album as number 39 out of the top 100 of the 80’s. Linden Hudson in a fair world shoud have had his name all over ELIMINATOR and gotten the just compensation he deserved. Instead he got ostracized."
+++
FROM THE BOOK: ​SHARP DRESSED MEN – ZZ TOP by DAVID BLAYNEY: "He (Linden) went back with the boys to 1970 when he was working as a radio disc jocky aliased Jack Smack. He was emcee for a show ZZ did around that time, and even sang an encore tune with the band, perhaps the only person ever to have that honor." (side note: this was ZZ Top’s very first show).
+++
FROM THE BOOK: "SHARP DRESSED MEN – ZZ TOP" BY DAVID BLAYNEY: "Linden remained at Frank’s (ZZ Top drummer) place as ZZ’s live-in engineer throughout the whole period of ELIMINATOR rehearsals, and was like one of the family… as he (Linden) worked at the controls day after day, watching the album (ELIMINATOR) take shape, his hopes for a big step forward in his production career undoubtably soared. ELIMINATOR marked the first time that ZZ Top was able to rehearse an entire album with the recording studio gadgetry that Billy so loved. With Linden Hudson around all the time, it also was the first time the band could write, rehearse, and record with someone who knew the men and the machines. ZZ Top was free to go musically crazy, but also musically crazy like a fox. Linden made that possible too."
+++
FROM THE BOOK "ZZ TOP – BAD AND WORLDWIDE" (ROLLING STONE PRESS, BY DEBORAH FROST, WRITER FOR ROLLING STONE MAGAZINE): "… SHARP DRESSED MAN which employed Hudson’s 120 beat-per-minute theory. The feel, the enthusiasm, the snappy beat and crisp clean sound propelled ELIMINATOR into the ears and hearts of 5 million people who previously could have cared less about the boogie band of RIO GRANDE MUD."
+++
ULTIMATECLASSICROCK DOT COM: "This new melding of styles was encouraged by Hudson, who served as a kind of pre-producer for ​EL LOCO … … Hudson helped construct ZZ Top drummer Frank Beard’s home studio, and had lived with him for a time. That led to these initial sessions, and then a closer collaboration on 1983’s ​ELIMINATOR.
+++
FIREDOGLAKE DOT COM: "I like Billy Gibbons’ guitar tone quite a lot, but I lost all respect for them after reading how badly they fucked over Linden Hudson (the guy who was the brains behind their move to include synthesizers and co-wrote most of their career-defining Eliminator record)."
+++
EMAIL FROM A ZZ TOP FAN TO LINDEN (One Of Many): "I write you today about broken hearts, one is mine and one is for you. I have been a ZZ Top fan since I was 6 years old. I purchased ELIMINATOR vinyl from Caldors in Connecticut with the $20 my grandma gave me for my birthday. I will spare the #1 fan epic saga of tee shirts, harassing Noreen at the fan club via phone weekly for years, over 40 shows attended. Posters, non stop conversation about the time I have spent idolizing this band, but more Billy G, as he has seemed to break free of the Lone Wolf shackles and it became more clear this was his baby. In baseball I was Don Mattingly’s #1 fan, Hershel Walker in football, Billy Gibbons in music. What do these individuals have in common? They were role models. Not a DUI, not a spousal abuse, not a drug overdose, not a cheater. Until I read your web page. I read Blayney’s book around 1992 or so, I was in middle school and I was familiar with your name for a long time. I didn’t realize you suffered so greatly or that your involvement was so significant. It pains me to learn my idol not only cheated but did something so wrong to another being. I now know this is where tall tales and fun loving bullshit and poor morals and ethics are distinguished and where I would no longer consider myself to look up to Billy. I love to joke and I love credit but I have always prided myself on ethics and principles… I hold them dear. I wanted to say, the snippet of UNDER PRESSURE you played sounded very new wave and I may like it more than the finished product. Well that’s all. You have reached ZZ Top’s biggest fan and I can let others know. Bummer. Cheers and good luck. James."​

Posted by lindenhud1 on 2018-02-04 21:03:36

Tagged: , venice , italy , cafe , restaurant , outdoor , night , night time , pizza cafe , europe , italia , monochromoe , b&w , black_and_white , off_season , pizza_restaurant , tables , chairs , venezia , lone , empty , ristorante , pasta , food , sidewalk_cafe , eatery , dining , travel

Buy 55 In. Fitted Outdoor Dust Cover for use with Tilt with credit card

Buy 55 In. Fitted Outdoor Dust Cover for use with Tilt with credit card

55 In. Fitted Outdoor Dust Cover for use with Tilt

Fitted outdoor dust cover
Weatherproof
4-ply polypropylene fabric
UV protection
Custom fit

SunbriteTV Dust Cover SB-DC551NA Computer & Electronic Covers

List Price: $ 125.00
Price: $ 98.69

More Products

zoval.com/buy-55-in-fitted-outdoor-dust-cover-for-use-wit…

Posted by maryshitlaw on 2014-04-01 12:27:56

Tagged: , Card , Cover , credit , Dust , Fitted , Outdoor , Tilt

boo ..

boo ..

redheadedphotographer.com/

Just playing around with my camera yesterday in downtown Louisville. Good to blow the dust off and use it for a change .. ;o)

I am clearly SLACKING on getting photos off my camera and onto my computer, let alone processed and onto flickr. I’m trying to making myself do better .. it’s my new goal .. 😀

In the meanwhile, if you’re interested in the over-sized monkeys that you see in the reflection (which are pretty cool BTW), I’d recommended visiting SnakeTongue’s set of photos.

I just ran this through Picasa .. nothing fancy .. yea, that’s my excuse and I’m sticking to it ..

Posted by joschmoblo on 2008-09-08 17:08:40

Tagged: , nikon , d300 , 10.5mm , fisheye , louisville , kentucky , 3DS_4698 , downtown , mirror , reflection , monkeys , everybody , always , thinks , they , right , everybody always thinks they are right , 21c , hotel , museum , contemporary , art , exhibit , outdoor , inflatable , creatures

Radical writing Products for outdoor Publicity

Radical writing Products for outdoor Publicity

A vinyl listing no dubiety the xviii for every one that want to weigh the over much nests assemble in its required crowed as is in raiment to do. These can employ one to suggestion their referred or professed the labored event. Whatsoever they index desire to state that for this is the strategy or supporter that they can get it terminated by human fit metamorphose.

There are individual choices and options to puck by when decorating the banners or signs. One improves which required existence assemblage related to is whether that can be simply record at move the size. The agents can present to creating the revised typeface and manner selections for the unit vinyl stickers printing so that’s the returns are optimum. If there is photography which desires to be included to the radical banners head then that can be worsen broadcast as inception? There are options that multicolored by current pictures to adding modify images. If that is for process success and advance then that could add the mascot and ordered personality.

Circumpolar and some byplay owner’s strength get pre-tried for publication stickers suchlike a marketing and prospering language. For most of the sectors or the areas, these championship dealings men beneficially get the future publicizing mean. That can moral be provided abstracted equivalent as souvenirs and tokens. Nonetheless, if you are searching to belittle the element employed of the adjudge writing, here are several things that customers required to speak neat that initial. Recognizing the items to do and the component or products to register that not great pester printers can place you honest neighboring the requirements of the specialized grouping.

Here are not so some of these which assess already managed the regenerate foregather. For happening, the mercantilism which is included in penalization certainly required the whatsoever types of the sign to the sacred assemble. Flat-bottomed then you hump to assure that the wound organization has hot travel in identify of responsibilities. In rigor, you get top hierarchic entity vinyl stickers. One best power affine to selecting the practiced horse printer is the contend which required. That’s not suggested to do horse authorship solitary specifically if you’re sweat to create it for the firstborn ideal. Here may be dissimilar clarifications you required to acquire along the itinerary so it is actually required which you bonk the professional or skillful to soft you lettered taste many the worker printing.

The creativeness real commences with the creator, or creator. The wound work manifestation important embodies thousands of engrossed artists drilled to utilize laptop or machine software for processing the see able histrionics of ideas. Quite the minuscule bumper stickers are standard in sound and reasonable variegate on the typeface to flavor up the collection withal; modernistic datum CD Jackets writing practices employ for bumper stickers to be printed in the vast show of information and with virtually any demo ideally.

Printingray.com is offering Vinyl Stickers on low rate with free shipping in USA and also provides other printing services like bumper stickers, CD jackets printing, Vinyl Banners and Carbonless Forms etc.

Related Radical Transparency Articles

Into the Canyons.

Into the Canyons.

.
~ Photo Series ~ Nahannni – River of Quest and Legend ~

Far better it is to dare mighty things, to win glorious triumphs, even though checkered with failure, than to rank with those poor spirits who neither enjoy much nor suffer much, because they live in the grey twilight than knows neither victory nor defeat.

Theodore Roosevelt

~~ About the photos. ~~

Today, I want to speak about the process I used to convert my 35mm slides to digital.

I bought my Canon slide scanner about 12 years ago. Over time, I of course upgraded to a new computer. Eventually, new computers stopped coming with SCSI connectors. So for quite a few years, my slide scanner sat around unused. So my choice was to either buy a new slide scanner, or to somehow find a way to connect my old slide scanner for my new computer. Canon, however, was not very helpful in this process. The official position of Canon was that for this scanner, they do not support Macintosh OS X., and they do not support third-party solutions to connect SCSI devices via USB or FireWire. Thanks Canon. Very helpful indeed.

I finally found a device that claimed the capability of allowing SCSI devices to connect to FireWire. Thankfully, it made my slide scanner useful again.

Although I tried to protect my 35mm slides, things happened over the years. No matter how hard you try, slides always seem to collect dust. Removing dust is always a hassle. You think you have done a good job cleaning, and scan the slide, only to find more dust. So, I often had to repeat the process. Sometimes, the dust refused to budge. And then, even stored away from the sun, some slides seems to have undergone some color shifts, requiring more work.

Luckily, these days there are numerous ways to clean up photos post processing, although many of them are still time-consuming. I was able to brighten up some photos that were too dark, like the one seen here. I was able to straighten and re-crop photos to my liking. So much so that some photos that were only borderline acceptable before are now some of my favorite photos of this trip. Boy, I just love digital post-processing.

Top 25 Viewed & Other Collections @ Flickr

Posted by Matt. Create. on 2010-06-09 08:03:11

Tagged: , active , activity , adventure , beach , beautiful , blue , canada , Canoe , Canyon , Clouds , ecology , Enfuse , forest , green , journey , leisure , life , lifestyle , magnificent , Nahanni , Park , nature , northwest , outdoor , remote , river , sky , solitude , spectacular , sport , summer , sun , Things , tourism , tranquility , travel , tree , trip , vacation , vast , water , Matt Shalvatis , Shalvatis , Nahanni National Park , northwest territories , 200+

Die Ernte / The Harvest

Die Ernte / The Harvest

Ein Mähdrescher ist eine landwirtschaftliche Erntemaschine zur Ernte von Körnerfrüchten wie insbesondere Getreide, aber auch Raps, Sonnenblumen, Ackerbohnen, Grassamen oder Ähnlichem. Wie die zusammengesetzte Bezeichnung (vgl. auch im Englischen: combine harvester) andeutet, kann der Mähdrescher mehrere Verfahrensschritte in einem Arbeitsgang erledigen, insbesondere die Mahd und den Drusch der Körnerfrüchte.

Vorne am Mähdrescher ist das Schneidwerk oder ein Erntevorsatz angebaut. Diese nehmen das Erntegut vom Feld auf, ein Schneidwerk übernimmt überdies die Aufgabe des Mähens. Je nach Art der Druschfrüchte kommen verschiedene Schneidwerke zum Einsatz.

Da heutige Arbeitsbreiten die auf öffentlichen Straßen maximal zulässige Breite von drei bis dreieinhalb Meter meist übersteigen (Arbeitsbreiten von fast 14 Meter für Getreide und 12 Meter für Mais sind möglich), kann das Schneidwerk für Straßenfahrt entweder abgebaut oder (hydraulisch) zusammengeklappt werden. Das abgebaute Schneidwerk wird mit einem Schneidwerkswagen transportiert, welcher entweder vom Mähdrescher selbst oder einem anderen Zugfahrzeug gezogen wird.

Ein Schneidwerk besteht aus dem Schneidtisch sowie Halmteilern, welche die Getreidehalme der zu mähenden Bahn von dem noch stehen bleibenden Getreide abteilen, ggfls. Ährenhebern, welche liegende Getreidehalme (Lagergetreide) unterfahren und aufrichten sollen, der der Zuführung der Getreidehalme zum Mähwerk dienenden Haspel[1], dem Fingermähwerk und der Einzugsschnecke bzw. dem Förderband, welche das Schnittgut dem Dreschwerk zuführen.
Bei der Ernte von Raps werden zur Trennung der Schnittbahnen an den Seiten des Schneidwerkes seitlich senkrecht stehende Scherenschnittmesser angebaut und der Schneidtisch wird verlängert. Raps fällt sehr leicht aus den Samenständen heraus, und die sich verzweigenden Einzelpflanzen verhaken sich miteinander. Durch ein Auseinanderreißen der untereinander verworrenen Rapspflanzen würde es zu erheblichen Kornverlusten kommen. Die Verlängerung fängt die Samen auf, die von der Haspel ausgeschlagen werden.

Maispflücker oder Maisgebisse sind so konzipiert, dass die Pflanzenstängel bei der Überfahrt durch einen schmal zulaufenden Spalt gezogen und nur die dabei abgepflückten Kolben dem Dreschwerk zugeführt werden, während ein unter dem Tisch angebrachtes Häckselwerk die Reste zerkleinert. Für Getreide gibt es außerdem Ährenstripper oder auch nur Stripper genannt. Diese arbeiten nach demselben Prinzip wie Maispflücker. Von Vorteil ist, dass das Stroh nicht durch die Maschine muss, und sich somit die Stundenleistung des Mähdreschers erhöht.

Beim Drusch von Sonnenblumen werden die Blütenstände vom Stängel getrennt. Vom Aufbau ähneln Sonnenblumenschneidwerke den Maisschneidwerken.

Bei ungleichmäßig abreifenden Beständen wird die Frucht zunächst mit einem Schwadmäher abgemäht und auf Schwad abgelegt. Nach weiterem Abreifen der Frucht im Schwad nimmt der Mähdrescher diese mit einer Pick-Up zum Drusch auf.

Der Schrägförderer trägt den Erntevorsatz. Innen läuft eine Einzugskette, die das Erntegut von der Einzugsschnecke übernimmt und es dem Dreschaggregat zuführt.

Unmittelbar am Ende des Schrägförderers befindet sich eine Steinfangmulde. Die Dreschtrommel soll die schwereren Steine dort hineindrücken. Da Rotormähdrescher besonders empfindlich auf eingezogene Steine reagieren, gibt es Systeme, bei dem die Steine durch Klopfsensoren erkannt werden und sich bei Steinerkennung der Boden des Schrägförderers öffnet, so dass der Stein wieder auf den Boden gelangen kann.
Das Dreschorgan besteht aus einem Dreschkorb, in dem sich entweder eine Dreschtrommel oder ein Rotor mit hoher Geschwindigkeit drehen. Der Spalt zwischen Trommel/Rotor und Korb ist sehr eng. So wird das Korn aus dem Stroh ausgerieben und fällt durch die Maschen des Korbes. Etwa 90 % der Körner werden durch das Dreschaggregat vom Stroh getrennt und gelangen direkt in die Reinigung, lediglich das Stroh und darin noch enthaltenes Restkorn gelangen zur Abscheidung. Je nach Art der zu dreschenden Frucht kann über die Variation der Trommeldrehzahl und eine Veränderung des Dreschspaltes zwischen Dreschtrommel und Dreschkorb die Intensität des Druschs variiert werden.

Noch intensiver dreschen kann man durch verschließen der ersten Korbreihen, oder durch den Einbau von Reibleisten. Das ist notwendig, wenn Grannen von Gerstenkörnern abgebrochen werden sollen oder wenn Früchte gedroschen werden, bei denen die Samen sehr fest in den Blütenständen sitzen. Die Abscheidefläche des Korbes verringert sich dabei.

Vom Dreschaggregat gelangt das Erntegut zur Abscheidung, wo die restlichen Körner und nicht vollständig ausgedroschene Ähren vom Stroh getrennt werden. Die Abscheidung erfolgt meist über einen sogenannten Hordenschüttler. Dieser besteht aus mehreren versetzt an einer Kurbelwelle befestigten ca. 20 cm breiten sägezahnförmigen Rinnen, über die das Gut aufgrund der Schüttelbewegung nach hinten wandert, wobei das leichtere und sehr viel größere Stroh den ansteigend verlaufenden Schüttlern folgt. Die Körner und nicht vollständig ausgedroschene Ähren werden vom Stroh getrennt und fallen durch kleine Löcher in den Horden auf das Reinigungssieb. Bei axialen Abscheideorganen erfolgt die Abscheidung an einem oder zwei Rotoren, deren Funktionsweise einem Separator ähnelt. Unterhalb der Rotoren ist ein Korb (ähnlich dem Dreschkorb) angebracht, der das Stroh führt, bis es vom Rotor nach hinten aus dem Mähdrescher oder auf den Häcksler gelangt.

Das Reinigungsgut, bestehend aus Körnern und NKB (Nicht-Korn-Bestandteile = Spreu und Strohteile), gelangt vom Dreschwerk und weiteren Abscheideorganen (Schüttler oder Abscheiderotoren) zur Reinigung. Die Reinigung dieses Gemisches erfolgt in der Regel über zwei übereinander angeordnete Siebe, das Ober- und das Untersieb. Die Zuführung des Reinigungsgutes zu den Sieben erfolgt je nach Hersteller unterschiedlich:
a) Über einen Stufenboden (treppenförmiges Profilblech), der sowohl für die Förderung, als auch für eine gleichmäßige Verteilung in Längs- und Querrichtung und eine gewisse Vorentmischung zuständig ist. b) Über eine aktive Förderung mittels mehreren nebeneinander liegenden Schnecken, deren Hauptaufgabe darin besteht, innerhalb der Reinigung an Höhe zu gewinnen und das Reinigungsgut gleichmäßig den Sieben zuzuführen. c) Eine oder mehrere, mit Hilfe eines Gebläses, belüftete Fallstufen, die bereits vor Erreichen der Siebe einen großen Anteil der leichten Spreuanteile aus dem Reinigungsgut ausblasen. Damit wird vor allem erreicht, dass die Körner unter den NKB auf die Siebfläche auftreffen und zügig abgeschieden werden.

Beide Siebe werden von unten durch einen Luftstrom (Wind) belüftet. Dies sorgt für eine Auflockerung des Reinigungsgutes, wobei im günstigsten Fall eine so genannte Wirbelschichtphase entsteht. Dabei "schwimmen" leichte Anteile wie die Spreu und Kurzstroh auf und ermöglichen den wesentlich schwereren Körnern das Erreichen der Siebfläche.

Das Reinigungsgut gelangt von der Zuführung aus zunächst auf das Obersieb. Dieses hat im Wesentlichen die Aufgabe, Körner und unausgedroschene Ährenteile (Überkehr) zum Untersieb abzuscheiden und die NKB über das Siebende aus dem Mähdrescher zu fördern. Das Untersieb stellt die letzte Reinigungsstufe dar, wobei im Idealfall eine Kornreinheit von über 99,6 % erreicht wird. Das Reinkorn wird über eine Schnecke zu einer Maschinenseite (in der Regel in Fahrtrichtung rechts) und von dort mittels eines Elevators in den Korntank gefördert. Der Siebübergang des Untersiebes (Überkehr) besteht aus unausgedroschenen Ährenteilen, Körnern und Spreu. Diese Überkehr wird mit einer Schnecke zu einer oder beiden Seiten des Mähdreschers gefördert und von dort mit Hilfe einer weiteren Schnecke oder eines Elevators zum Dreschwerk oder den Förderelementen der Reinigung zurückgefördert. Hersteller, die die Überkehr zur Reinigung zurückführen, bauen auf dem Weg dorthin ein zusätzliches kleines Dreschorgan ein.

Da mit den NKB auch große Mengen an Unkrautsamen aus dem Mähdrescher gelangen, wird die Spreu ebenso wie das Stroh (sofern gehäckselt) bei Schnittbreiten über 3 Meter möglichst über die gesamte Arbeitsbreite verteilt, beispielsweise mittels scheibenförmiger Spreuverteiler. Durch Wechsel von Ober- und Untersiebbauarten sowie durch Variation der Windgeschwindigkeiten kann die Reinigung auf die zu dreschende Getreideart eingestellt werden. Sowohl die Frequenz als auch die Amplitude der Siebschwingung werden meist vom Hersteller vorgegeben und können nur mit großem Umbauaufwand geändert werden.

Der Getreidetank dient als Vorratsbehälter für das Korn und wird, oftmals auch parallel zum Drusch, über das Abtankrohr auf einen Transportanhänger oder einen Überladewagen entladen. Das Fassungsvermögen des Korntankes beträgt je nach Größe des Mähdreschers zwischen 5 und 12 Kubikmetern. Er ist im Allgemeinen so bemessen, dass im Getreide 15-30 min lang ohne Entleerung des Tanks gedroschen werden kann.

Am hinteren Ende des Mähdreschers, hinter den Dresch- und Abscheideorganen, wird das gedroschene Stroh aus dem Mähdrescher ausgeworfen. Das Stroh kann entweder zur späteren Bergung mit einer Ballenpresse auf Schwad gelegt oder gehäckselt werden. Zur Schwadablage verfügen Mähdrescher vielfach über Leitbleche oder Zinken, mit denen sich die Schwadbreite verstellen lässt, um diese auf die Presse anzupassen. Häufig ist bei neueren Maschinen ein Strohhäcksler montiert, der das gedroschene Stroh klein häckselt und es über die gesamte Schnittbreite verteilt. Das gehäckselte Stroh kann später in den Boden eingearbeitet werden und trägt so zur Erhöhung des Humusanteils bei. Bei immer größeren Schnittbreiten stellt eine gleichmäßige Strohverteilung heute eine große Herausforderung für die Hersteller dar.

Mit einer Nennleistung von 435 Kilowatt (591 PS) gilt der New Holland CR 9090[3] derzeit als der Mähdrescher mit der höchsten Motorleistung. Moderne Mähdrescher benötigen die Leistung vor allem für das Dreschaggregat, die Abscheideorgane und den Strohhäcksler. Abhängig von den Erntebedingungen und der Arbeitsbreite verbraucht alleine der Häcksler bis zu 20 % der verfügbaren Leistung. Da während des Dreschens sehr viel Staub entsteht, ist die Zuführung der Verbrennungs- und Kühlluft des Motors problembehaftet. Luftfilter und Kühler müssen daher durch maschinelle Einrichtungen sauber gehalten werden, was entweder mittels einer Absaugung, rotierender Bürsten oder durch ein Lüfterwendegetriebe geschieht. Das Wendegetriebe verändert die Drehrichtung des Kühlerventilators ab einer bestimmten Temperatur, so dass dieser den Kühler frei bläst.

Die ganze Maschine sitzt auf einem Fahrwerk, das von zwei großen und breiten Rädern (oft mehr als 80 cm breit) direkt hinter dem Schneidwerk und unterhalb der Kabine dominiert wird. Gelenkt wird über die hinteren, kleineren Räder. Beim Einsatz in schwierigem Gelände kommen Allradantriebe und auch vermehrt Raupenlaufwerke zum Einsatz, deren Vorteile zum einen in einer geringeren Bodenverdichtung und zum anderen in einer höheren Laufruhe der Maschine liegen, die besonders bei sehr breiten Schneidwerken von Bedeutung ist. Durch die Auslegung eines Mähdreschers als Hecklenker kann mit dem unmittelbar vor der Vorderachse montierten Schneidwerk ein sehr enger Wendekreis erreicht werden.

Da die optimale Fahrgeschwindigkeit beim Dreschen von vielen Faktoren abhängt (Motorleistung, Dreschverluste, Bestandsdichte, Lagergetreide, Bodenunebenheiten, etc.), ist es wichtig, dass die Geschwindigkeit des Mähdreschers stufenlos verändert werden kann. Dazu dienen meist Variator- oder hydrostatische Getriebe.

Anstelle des bei frühen Mähdreschern gängigen offenen Fahrerplatzes direkt hinter dem Schneidwerk und über dem Schrägförderer mit erheblicher Staub-, Lärm- und bei entsprechender Witterung Hitzebelastung des Maschinenführers ist bei modernen Mähdreschern fast ausnahmslos an gleicher Stelle eine geschlossene Fahrerkabine aufgebaut. Diese erlaubt einen wirksamen Schutz des Fahrers vor Staub, Lärm und Hitze und ist daher in der Regel klimatisiert und komfortabel für einen langen Arbeitstag (meist zwischen 10 und 14 Stunden) ausgeführt. Sie enthält auch die elektronischen Steuerungen und Anzeigen zur Einstellung und Überwachung aller relevanten Parameter des Mähdreschers (Motoranzeigen, Steuerung des Schneidwerks und des Dreschwerks, immer öfter Instrumente zur Ertragsmessung, teilweise kombiniert mit GPS-Erfassungssystemen).

Die Steuerung des Schneidwerks, des Abtankrohrs und der Fahrgeschwindigkeit wird mit einem Hebel durchgeführt, welcher ständig in der rechten Hand des Fahrers geführt wird (die linke Hand liegt am Lenkradknauf). Bei modernen Mähdreschern ist dies ein Joystick, der die Elektronik ansteuert. In älteren Modellen ist ein Hebel mit den Hydrauliksteuergeräten mechanisch verbunden. Durch Wahl der Hebelgasse wird die Funktion des Steuergeräts (Schneidwerkshöhe, Abstand Haspel/Schneidwerkstisch, Fahrgeschwindigkeit) gewählt. Weitere Hebelgassen können beispielsweise für Haspelgeschwindigkeit oder Dreschtrommeldrehzahl vorhanden sein, sind meist aber erst nach Lösen einer Sicherung zugänglich, um versehentliches Verstellen zu verhindern.

In den letzten Jahren werden vermehrt Steuerungs- und Kontrollaufgaben, die früher durch den Fahrer ausgeführt wurden, von automatisierten Einrichtungen übernommen. So wird beispielsweise das Schneidwerk auf einer vom Fahrer vorgegebenen Schnitthöhe automatisch den Geländeunebenheiten nachgeführt. Sensoren erfassen die Bodenunebenheiten, entsprechend der Sensordaten verändert die automatisierte Steuerung sodann Arbeitshöhe sowie Neigung des Schneidwerks. Ein weiterer Automatisierungsschritt sind selbsttätige Lenksysteme. Durch DGPS kann die Position des Mähdreschers auf dem Feld mit einer Genauigkeit von ± 10 cm bestimmt werden. Mit diesen Informationen führt der Bordcomputer den Mähdrescher parallel entlang der vorherigen Fahrspur über das Feld. Der Fahrer braucht das Steuer nur noch am Ende des Feldes in die Hände zu nehmen, um die Maschine zu wenden. Des Weiteren gibt es Systeme, die mit Sensoren die Menge des Dreschgutes messen und die Geschwindigkeit des Mähdreschers so anpassen, dass dieser immer mit optimaler Auslastung fährt.

Bis zur Mechanisierung der Landwirtschaft wurde Getreide manuell in mehreren Arbeitsschritten geerntet. Zuerst mähte man das Getreide mit Sichel, Sichte oder Sense ab und band es in der Regel zu Garben die man dann zunächst auf dem Feld stehen ließ. Diese Mahd erfolgte bereits vor der beim Mähdrusch erforderlichen Totreife des Getreides, das auf dem Feld in Garben aufgestellte Erntegut konnte auf diesem noch nachreifen und trocknen, sodass bei der Mahd weder Korn noch Stroh die notwendige Trockenheit zur Endlagerung haben mussten. In der Regel transportierte man die Garben sodann zum Bauernhof, dort wurde das Getreide, oft nach weiterer Lagerung in der Scheune auf der Tenne mit Dreschflegeln ausgedroschen. Anschließend reinigte man es durch sieben oder worfeln von der Spreu und Verunreinigungen wie Erde oder Unkrautsamen. Beim Worfeln wurden leichte Bestandteile des hochgeworfenen Druschguts wie die Spreu vom Wind weggeweht. Später wurden hierzu einfache handbetriebene Windfegen verwendet, bei denen ein Siebkasten das Getreide in einen darunter angebrachten Windkasten rieseln ließ; diese Windsichtung ist bis heute Bestandteil der Reinigungsstufe von Mähdreschern.

Mit der einsetzenden Mechanisierung wurden etwa ab 1786 zunächst stationäre Dreschmaschinen entwickelt, die Anfangs nur per Hand oder über Göpel durch Tiere angetrieben wurden. Später wurden Dampfmaschinen, Verbrennungsmotoren, Elektromotoren und andere Antriebe eingesetzt. Die erste Mähmaschine für Getreide wurde 1826 von dem schottischen Geistlichen Reverend Patrick Bell entwickelt. Mit der Erfindung des mechanischen Knoters 1857 wurde es möglich, Mähbinder zu bauen, die das Getreide vollmechanisiert zu Garben banden. Zunächst wurden diese Maschinen von Pferden gezogen und dabei über die Maschinenräder angetrieben. Mit Erscheinen brauchbarer Traktoren nutze man zunächst auch diese anstelle von Pferden zum Zug. Erst 1927 produzierte Krupp einen ersten Mähbinder, der unmittelbar über eine Zapfwelle vom Motor des Traktors angetrieben wurde.[4]

Aus der Kombination von Mähmaschine und fahrbarer Dreschmaschine entstanden die ebenfalls mobilen Mähdrescher. Bereits 1834 demonstrierten Hiram Moore und James Hascall in Michigan eine Maschine, die sowohl mähen und dreschen als auch reinigen konnte, die Arbeitsbreite betrug 4,60 Meter.[5] 1836 wurde ihre Maschine patentiert. Bis zu 40 Maultiere oder Pferde waren erforderlich, um diese Maschinen zu ziehen. Der Antrieb der Dresch- und Reinigungsorgane fand über eines der Räder statt. George Stockton Berry baute 1886 den ersten selbstfahrenden Mähdrescher, der von einer Dampfmaschine angetrieben wurde. Der Kessel wurde mit dem ausgedroschenen Stroh befeuert und versorgte auch den separaten Antrieb der Dreschorgane mit Dampf.[6] 1911 verwendete die Holt Manufacturing Company in Stockton, Kalifornien erstmal Verbrennungsmotoren auf Mähdreschern, diese trieben jedoch nur Dresch-, Abscheide- und Reinigungssystem an, und dienten noch nicht als Fahrantrieb.

Der erste selbstfahrende Mähdrescher eines deutschen Herstellers war der MD 1 der Maschinenfabrik Fahr, er wurde auf der DLG-Ausstellung in Hamburg im Jahr 1951 erstmals der Landwirtschaft präsentiert. Ein erster Rotormähdrescher wurde von New Holland im Jahr 1975 auf den Markt gebracht.
Bei der Abscheidung unterscheidet man zwischen zwei grundsätzlich verschiedenen Arten von Abscheideorganen.

Hordenschüttler: Bei herkömmlichen Mähdreschern erfolgt die Abscheidung über einen Hordenschüttler. Der Schüttler besteht aus vier bis sechs Horden, auf deren Oberseite widerhakenförmige Zacken angebracht sind. Alle Horden sind an zwei Kurbelwellen befestigt, die sich drehen. Es ergibt sich eine kreisförmige Exzenterbewegung der Horde: zuerst nach oben, dann nach hinten, dann nach unten, dann nach vorne. Wenn eine Horde am obersten Punkt ist, sind die daneben liegenden Horden am tiefsten. Auf dem Weg nach oben übernehmen die Horden so die Strohmatte von den daneben liegenden und führen sie mit den Widerhaken nach hinten. Bei der Abwärtsbewegung geben sie die Matte wieder an die daneben liegenden Horden ab. Leer laufen sie wieder in Fahrtrichtung nach vorne.
Dadurch wird das Stroh so aufgeworfen, dass die noch mitgeführten Körner durch die Strohmatte hindurchfallen. Unter jeder Horde ist eine Wanne auf der die Körner schräg nach vorne auf den Vorbereitungsboden laufen.
Der Schüttler ist jenes Abscheidesystem, welches das Stroh am wenigsten beansprucht und zerstört. Bei feuchtem oder unreifem Stroh sinkt die Abscheideleistung schnell. Bei der Fahrt bergauf steigen die Verluste ebenfalls, weil die Hangneigung der Schüttlerneigung entgegensteht. Am Seitenhang ist begrenzt die Horde an der Hangunterseite die Abscheideleistung. Unter diesen Bedingungen muss die Fahrgeschwindigkeit reduziert werden.
Axiale Abscheideelemente: Mähdrescher mit sehr breiten Schneidwerken werden darum mit axialen Abscheideelementen gebaut. Ein oder zwei (dann nebeneinander angeordnete) axiale Rotoren übernehmen die Aufgabe der Abscheidung. Durch die Fliehkräfte werden Korn und Stroh voneinander getrennt. Elemente aus einer Korbstruktur, die den Rotor mindestens unterhalb umschließen, verhindern, dass zu viele Nichtkornbestandteile auf die Reinigung gelangen und somit deren Funktionsfähigkeit einschränken. Bei axialen Systemen passiert das Stroh die Abscheidung rund zehnmal schneller als bei Schüttlersystemen. Daher sind größere Durchsätze möglich und vor allem bei feuchten Erntebedingungen ist der Kornverlust erheblich geringer. Axialmähdrescher sind zudem weniger anfällig gegen starke Hangneigungen, da hier die Schwerkraft weniger Bedeutung für die Abscheidung hat.

Getreide wird in aller Regel auf ebenen Flächen angebaut. Es gibt jedoch Regionen, wo auch in sanft hügeligen bis zum Teil recht steilen Topografien Druschfrüchte angebaut werden. Wie oben beschrieben, wird der Drusch- und Trennprozess in Mähdreschern sehr stark von der Topografie oder eben der Schwerkraft beeinflusst. Bereits die durch die Hangneigung einseitige Beschickung des Dreschwerkes reduziert die Leistungsfähigkeit der Maschine enorm, da nicht die ganze Dreschwerksbreite genutzt wird. Schlimmer jedoch ist die einseitige Beschickung der Reinigungsanlage (Vorbereitungsboden, Siebe) mit dem ausgedroschenen Gut. Spreu und Korn erreichen die Reinigungsanlage auf der hangabwärts liegenden Seite, darüber hinaus wird durch die Siebbewegung das Material weiter einseitig konzentriert.

Die Leistungseinbuße steigt exponentiell mit der Hangneigung. Es ist also von großem Interesse, die Hangneigung resp. diese Leistungseinbuße zu kompensieren. Dazu existieren verschiedene Systeme.
Ältestes Verfahren, das heute vor allem bei extremen Hanglagen noch immer angewandt wird, ist, dass das Fahrwerk so angehoben oder abgesenkt wird, dass die Dreschorgange waagerecht liegen. Der erste Mähdrescher mit einem Hangausgleich nach diesem Prinzip wurde 1891 von den Gebrüdern Holt in Kalifornien gebaut.[8] Der Hangausgleich musste bei früheren Maschinen mechanisch eingestellt werden, wofür eine zweite Person auf dem Mähdrescher notwendig war. Der erste automatische Hangausgleich wurde 1941 von Raymond A. Hanson entwickelt. 1945 stattete er die ersten Maschinen mit diesem System aus, bei dem der Grad der Neigung über Quecksilberschalter ermittelt wurde, und die Abscheideorgane über pneumatische Zylinder entsprechend ausgerichtet wurden.[9]

Heute geschieht der Ausgleich in der Regel mittels zweier Hydraulikzylinder, die den Mähdrescher einseitig von der Vorderachse abheben und somit waagerecht halten. Da die Hinterachse pendelnd gelagert ist, ist hier kein Neigungsausgleich erforderlich. Seltener ermöglicht eine Hubhydraulik an der Hinterachse auch einen Neigungsausgleich in Längsrichtung.

Problematisch ist hier der technische Aufwand und die damit verbundenen Kosten. Auch die Gutübergabe vom schrägen Schneidwerk auf den geraden Mähdrescher ist problematisch. Dieses System bietet jedoch den Vorteil, dass das komplette Fahrzeug mit Ausnahme des Schneidwerks in der Waagerechten gehalten wird. Somit wird die Leistung der Reinigungsorgane nicht durch die Seitenlage beeinträchtigt. Auch kann so das Volumen des Korntanks voll ausgenutzt werden, was nicht möglich ist, wenn das Fahrzeug zur Seite geneigt ist, da das Erntegut zu dieser Seite verrutschen würde, was in extremen Fällen sogar ein Umkippen des Fahrzeugs zur Folge haben kann. Darüber hinaus erhöht sich der Fahrkomfort, da auch der Fahrer in einer geraden Sitzposition verbleibt, und nicht aus dem Sitz zu rutschen droht.

Die in den letzten Jahren in vielen Bereichen stattfindende Unternehmenskonzentration ist auch auf dem Agrar-Sektor zu beobachten. Bei Mähdreschern tragen zusätzlich die hohen technologischen Anforderungen sowie die kapitalintensive Produktion dazu bei, dass viele früher eigenständige Unternehmen heute in einem Dachkonzern vereinigt sind. Dabei werden etablierte Markennamen teilweise nebeneinander beibehalten oder – etwa regional oder im Produktspektrum – differenziert. Während weniger bekannte oder angesehene Marken aufgegeben werden, können Unternehmen mit hochwertigem Image bisher nicht vorhandene Produktlinien unter eigenem Namen von Konzernschwestern übernehmen.

John Deere ist Weltmarktführer bei Landmaschinen.
Claas ist europäischer Marktführer für Mähdrescher.
Im CNH Global-Konzern, weltweit an zweiter Stelle der Landmaschinenproduzenten, ging unter anderem die DDR-Marke Fortschritt auf, heutige Marken sind
Case IH und
New Holland.
Die 1990 entstandene AGCO (Allis-Gleaner Corporation) vereinigte einige bekannte Marken:
Gleaner war von Beginn an der Markenname für Erntemaschinen.
Massey Ferguson wurde 1994 übernommen.
Fendt kam 1997 zum Konzern und bietet seit 1999 Mähdrescher unter eigenem Namen an.
Laverda ist seit 2010 im hundertprozentigen Konzernbesitz.
Deutz-Fahr ist das Nachfolgeunternehmen des ersten deutschen Produzenten.
Rostselmasch ist ein russischer Hersteller von u.a. Mähdreschern.
Sampo Rosenlew ist ein finnischer Hersteller von u.a. Mähdreschern.
Parzellendrescher für das Versuchswesen stellen die Firmen Zürn Harvesting [10] und Wintersteiger her.

The combine harvester, or simply combine, is a machine that harvests grain crops. The name derives from its combining three separate operations comprising harvesting—reaping, threshing, and winnowing—into a single process. Among the crops harvested with a combine are wheat, oats, rye, barley, corn (maize), soybeans and flax (linseed). The waste straw left behind on the field is the remaining dried stems and leaves of the crop with limited nutrients which is either chopped and spread on the field or baled for feed and bedding for livestock.

Combine harvesters are one of the most economically important labor saving inventions, enabling a small fraction of the population to be engaged in agriculture.

Scottish inventor Patrick Bell invented the reaper in 1826. The combine was invented in the United States by Hiram Moore in 1834, and early versions were pulled by horse or mule teams.[2] In 1835, Moore built a full-scale version and by 1839, over 50 acres of crops were harvested.[3] By 1860, combine harvesters with a cutting width of several metres were used on American farms.[4] In 1882, the Australian Hugh Victor McKay had a similar idea and developed the first commercial combine harvester in 1885, the Sunshine Harvester.[5]

Combines, some of them quite large, were drawn by mule or horse teams and used a bullwheel to provide power. Later, steam power was used, and George Stockton Berry integrated the combine with a steam engine using straw to heat the boiler.[6]Tractor-drawn, combines became common after World War II as many farms began to use tractors. These combines used a shaker to separate the grain from the chaff and straw-walkers (grates with small teeth on an eccentric shaft) to eject the straw while retaining the grain. Early tractor-drawn combines were usually powered by a separate gasoline engine, while later models were PTO-powered. These machines either put the harvested crop into bags that were then loaded onto a wagon or truck, or had a small bin that stored the grain until it was transferred to a truck or wagon with an auger.

In the U.S., Allis-Chalmers, Massey-Harris, International Harvester, Gleaner Manufacturing Company, John Deere, and Minneapolis Moline are past or present major combine producers.

In 1911, the Holt Manufacturing Company of California produced a self-propelled harvester.[7] In Australia in 1923, the patented Sunshine Auto Header was one of the first center-feeding self-propelled harvesters.[8] In 1923 in Kansas, the Curtis brothers and their Gleaner Manufacturing Company patented a self-propelled harvester which included several other modern improvements in grain handling.[9] Both the Gleaner and the Sunshine used Fordson engines. In 1929 Alfredo Rotania of Argentina patented a self-propelled harvester.[10] In 1937, the Australian-born Thomas Carroll, working for Massey-Harris in Canada, perfected a self-propelled model and in 1940 a lighter-weight model began to be marketed widely by the company.[11] Lyle Yost invented an auger that would lift grain out of a combine in 1947, making unloading grain much easier.[12]

In 1952 Claeys launched the first self- propelled combine harvester in Europe;[13] in 1953, the European manufacturer CLAAS developed a self-propelled combine harvester named ‘Herkules’, it could harvest up to 5 tons of wheat a day.[14] This newer kind of combine is still in use and is powered by diesel or gasoline engines. Until the self-cleaning rotary screen was invented in the mid-1960s combine engines suffered from overheating as the chaff spewed out when harvesting small grains would clog radiators, blocking the airflow needed for cooling.

A significant advance in the design of combines was the rotary design. The grain is initially stripped from the stalk by passing along a helical rotor instead of passing between rasp bars on the outside of a cylinder and a concave. Rotary combines were first introduced by Sperry-New Holland in 1975.[15]

In about the 1980s on-board electronics were introduced to measure threshing efficiency. This new instrumentation allowed operators to get better grain yields by optimizing ground speed and other operating parameters.

Combines are equipped with removable heads that are designed for particular crops. The standard header, sometimes called a grain platform, is equipped with a reciprocating knife cutter bar, and features a revolving reel with metal or plastic teeth to cause the cut crop to fall into the auger once it is cut. A variation of the platform, a "flex" platform, is similar but has a cutter bar that can flex over contours and ridges to cut soybeans that have pods close to the ground. A flex head can cut soybeans as well as cereal crops, while a rigid platform is generally used only in cereal grains.

Some wheat headers, called "draper" headers, use a fabric or rubber apron instead of a cross auger. Draper headers allow faster feeding than cross augers, leading to higher throughputs due to lower power requirements. On many farms, platform headers are used to cut wheat, instead of separate wheat headers, so as to reduce overall costs.

Dummy heads or pick-up headers feature spring-tined pickups, usually attached to a heavy rubber belt. They are used for crops that have already been cut and placed in windrows or swaths. This is particularly useful in northern climates such as western Canada where swathing kills weeds resulting in a faster dry down.

While a grain platform can be used for corn, a specialized corn head is ordinarily used instead. The corn head is equipped with snap rolls that strip the stalk and leaf away from the ear, so that only the ear (and husk) enter the throat. This improves efficiency dramatically since so much less material must go through the cylinder. The corn head can be recognized by the presence of points between each row.

Occasionally rowcrop heads are seen that function like a grain platform, but have points between rows like a corn head. These are used to reduce the amount of weed seed picked up when harvesting small grains.

Self-propelled Gleaner combines could be fitted with special tracks instead of tires or tires with tread measuring almost 10in deep to assist in harvesting rice. Some combines, particularly pull type, have tires with a diamond tread which prevents sinking in mud. These tracks can fit other combines by having adapter plates made.

The cut crop is carried up the feeder throat (commonly called the "feederhouse") by a chain and flight elevator, then fed into the threshing mechanism of the combine, consisting of a rotating threshing drum (commonly called the "cylinder"), to which grooved steel bars (rasp bars) are bolted. The rasp bars thresh or separate the grains and chaff from the straw through the action of the cylinder against the concave, a shaped "half drum", also fitted with steel bars and a meshed grill, through which grain, chaff and smaller debris may fall, whereas the straw, being too long, is carried through onto the straw walkers. This action is also allowed due to the fact that the grain is heavier than the straw, which causes it to fall rather than "float" across from the cylinder/concave to the walkers. The drum speed is variably adjustable on most machines, whilst the distance between the drum and concave is finely adjustable fore, aft and together, to achieve optimum separation and output. Manually engaged disawning plates are usually fitted to the concave. These provide extra friction to remove the awns from barley crops. After the primary separation at the cylinder, the clean grain falls through the concave and to the shoe, which contains the chaffer and sieves. The shoe is common to both conventional combines and rotary combines.

In the Palouse region of the Pacific Northwest of the United States the combine is retrofitted with a hydraulic hillside leveling system. This allows the combine to harvest the steep but fertile soil in the region. Hillsides can be as steep as a 50% slope. Gleaner, IH and Case IH, John Deere, and others all have made combines with this hillside leveling system, and local machine shops have fabricated them as an aftermarket add-on.

The first leveling technology was developed by Holt Co., a California firm, in 1891.[16] Modern leveling came into being with the invention and patent of a level sensitive mercury switch system invented by Raymond Alvah Hanson in 1946.[17] Raymond’s son, Raymond, Jr., produced leveling systems exclusively for John Deere combines until 1995 as R. A. Hanson Company, Inc. In 1995, his son, Richard, purchased the company from his father and renamed it RAHCO International, Inc. In March 2011, the company was renamed Hanson Worldwide, LLC.[18] Production continues to this day.

Hillside leveling has several advantages. Primary among them is an increased threshing efficiency on hillsides. Without leveling, grain and chaff slide to one side of separator and come through the machine in a large ball rather than being separated, dumping large amounts of grain on the ground. By keeping the machinery level, the straw-walker is able to operate more efficiently, making for more efficient threshing. IH produced the 453 combine which leveled both side-to-side and front-to-back, enabling efficient threshing whether on a hillside or climbing a hill head on.

Secondarily, leveling changes a combine’s center of gravity relative to the hill and allows the combine to harvest along the contour of a hill without tipping, a very real danger on the steeper slopes of the region; it is not uncommon for combines to roll on extremely steep hills.

Newer leveling systems do not have as much tilt as the older ones. A John Deere 9600 combine equipped with a Rahco hillside conversion kit will level over to 44%, while the newer STS combines will only go to 35%. These modern combines use the rotary grain separator which makes leveling less critical. Most combines on the Palouse have dual drive wheels on each side to stabilize them.

A leveling system was developed in Europe by the Italian combine manufacturer Laverda which still produces it today.

Sidehill combines are very similar to hillside combines in that they level the combine to the ground so that the threshing can be efficiently conducted; however, they have some very distinct differences. Modern hillside combines level around 35% on average, older machines were closer to 50%. Sidehill combines only level to 18%. They are sparsely used in the Palouse region. Rather, they are used on the gentle rolling slopes of the mid-west. Sidehill combines are much more mass-produced than their hillside counterparts. The height of a sidehill machine is the same height as a level-land combine. Hillside combines have added steel that sets them up approximately 2–5 feet higher than a level-land combine and provide a smooth ride.
Another technology that is sometimes used on combines is a continuously variable transmission. This allows the ground speed of the machine to be varied while maintaining a constant engine and threshing speed. It is desirable to keep the threshing speed constant since the machine will typically have been adjusted to operate best at a certain speed.

Self-propelled combines started with standard manual transmissions that provided one speed based on input rpm. Deficiencies were noted and in the early 1950s combines were equipped with what John Deere called the "Variable Speed Drive". This was simply a variable width sheave controlled by spring and hydraulic pressures. This sheave was attached to the input shaft of the transmission. A standard 4 speed manual transmission was still used in this drive system. The operator would select a gear, typically 3rd. An extra control was provided to the operator to allow him to speed up and slow down the machine within the limits provided by the variable speed drive system. By decreasing the width of the sheave on the input shaft of the transmission, the belt would ride higher in the groove. This slowed the rotating speed on the input shaft of the transmission, thus slowing the ground speed for that gear. A clutch was still provided to allow the operator to stop the machine and change transmission gears.

Later, as hydraulic technology improved, hydrostatic transmissions were introduced by Versatile Mfg for use on swathers but later this technology was applied to combines as well. This drive retained the 4 speed manual transmission as before, but this time used a system of hydraulic pumps and motors to drive the input shaft of the transmission. This system is called a Hydrostatic drive system. The engine turns the hydraulic pump capable of pressures up to 4,000 psi (30 MPa). This pressure is then directed to the hydraulic motor that is connected to the input shaft of the transmission. The operator is provided with a lever in the cab that allows for the control of the hydraulic motor’s ability to use the energy provided by the pump. By adjusting the swash plate in the motor, the stroke of its pistons are changed. If the swash plate is set to neutral, the pistons do not move in their bores and no rotation is allowed, thus the machine does not move. By moving the lever, the swash plate moves its attached pistons forward, thus allowing them to move within the bore and causing the motor to turn. This provides an infinitely variable speed control from 0 ground speed to what ever the maximum speed is allowed by the gear selection of the transmission. The standard clutch was removed from this drive system as it was no longer needed.

Most if not all modern combines are equipped with hydrostatic drives. These are larger versions of the same system used in consumer and commercial lawn mowers that most are familiar with today. In fact, it was the downsizing of the combine drive system that placed these drive systems into mowers and other machines.

Despite great advances mechanically and in computer control, the basic operation of the combine harvester has remained unchanged almost since it was invented.

First, the header, described above, cuts the crop and feeds it into the threshing cylinder. This consists of a series of horizontal rasp bars fixed across the path of the crop and in the shape of a quarter cylinder. Moving rasp bars or rub bars pull the crop through concaved grates that separate the grain and chaff from the straw. The grain heads fall through the fixed concaves. What happens next is dependent on the type of combine in question. In most modern combines, the grain is transported to the shoe by a set of 2, 3, or 4 (possibly more on the largest machines) augers, set parallel or semi-parallel to the rotor on axial mounted rotors and perpendicular Flow" combines.) In older Gleaner machines, these augers were not present. These combines are unique in that the cylinder and concave is set inside feederhouse instead of in the machine directly behind the feederhouse. Consequently, the material was moved by a "raddle chain" from underneath the concave to the walkers. The clean grain fell between the raddle and the walkers onto the shoe, while the straw, being longer and lighter, floated across onto the walkers to be expelled. On most other older machines, the cylinder was placed higher and farther back in the machine, and the grain moved to the shoe by falling down a "clean grain pan", and the straw "floated" across the concaves to the back of the walkers.

Since the Sperry-New Holland TR70 Twin-Rotor Combine came out in 1975, most manufacturers have combines with rotors in place of conventional cylinders. However, makers have now returned to the market with conventional models alongside their rotary line-up. A rotor is a long, longitudinally mounted rotating cylinder with plates similar to rub bars (except for in the above mentioned Gleaner rotaries).

There are usually two sieves, one above the other. The sieves and basically a metal frame, that has many rows of "fingers" set reasonably close together. The angle of the fingers is adjustable as to change the clearance and control the size of material passing through. The top is set with more clearance than the bottom as to allow a gradual cleaning action. Setting the concave clearance, fan speed, and sieve size is critical to ensure that the crop is threshed properly, the grain is clean of debris, and that all of the grain entering the machine reaches the grain tank or ‘hopper’. ( Observe, for example, that when travelling uphill the fan speed must be reduced to account for the shallower gradient of the sieves.)

Heavy material, e.g., unthreshed heads, fall off the front of the sieves and are returned to the concave for re-threshing.

The straw walkers are located above the sieves, and also have holes in them. Any grain remaining attached to the straw is shaken off and falls onto the top sieve.

When the straw reaches the end of the walkers it falls out the rear of the combine. It can then be baled for cattle bedding or spread by two rotating straw spreaders with rubber arms. Most modern combines are equipped with a straw spreader.

For some time, combine harvesters used the conventional design, which used a rotating cylinder at the front-end which knocked the seeds out of the heads, and then used the rest of the machine to separate the straw from the chaff, and the chaff from the grain. The TR70 from Sperry-New Holland was brought out in 1975 as the first rotary combine. Other manufacturers soon followed, IH with their ‘Axial Flow’ in 1977 and Gleaner with their N6 in 1979.

In the decades before the widespread adoption of the rotary combine in the late seventies, several inventors had pioneered designs which relied more on centrifugal force for grain separation and less on gravity alone. By the early eighties, most major manufacturers had settled on a "walkerless" design with much larger threshing cylinders to do most of the work. Advantages were faster grain harvesting and gentler treatment of fragile seeds, which were often cracked by the faster rotational speeds of conventional combine threshing cylinders.

It was the disadvantages of the rotary combine (increased power requirements and over-pulverization of the straw by-product) which prompted a resurgence of conventional combines in the late nineties. Perhaps overlooked but nonetheless true, when the large engines that powered the rotary machines were employed in conventional machines, the two types of machines delivered similar production capacities. Also, research was beginning to show that incorporating above-ground crop residue (straw) into the soil is less useful for rebuilding soil fertility than previously believed. This meant that working pulverized straw into the soil became more of a hindrance than a benefit. An increase in feedlot beef production also created a higher demand for straw as fodder. Conventional combines, which use straw walkers, preserve the quality of straw and allow it to be baled and removed from the field.

Grain combine fires are responsible for millions of dollars of loss each year. Fires usually start near the engine where dust and dry crop debris accumulate.[19] From 1984 to 2000, 695 major grain combine fires were reported to local fire departments.[20] Dragging chains to reduce static electricity was one method employed for preventing harvester fires, but the role of static electricity linked to causing harvester fires is yet to be established.
Quelle:
en.wikipedia.org/wiki/Combine_harvester
de.wikipedia.org/wiki/M%C3%A4hdrescher

Posted by !!! Painting with Light !!! #schauer on 2014-08-07 06:49:19

Tagged: , Schauer , Christian , Oberdiendorf , Thyrnau , Passau , Hauzenberg , Bayern , Bavaria , Deutschland , Germany , Ernte , Harvest , Harvester , Bauer , Farmer , Landwirt , Natur , Nature , Old , Alt , Nostalgie , Denim , Retro , Vintage , Farm , Bauernhof , Strom , Reifen , Wheel , Stahl , Steel , Outdoor , München , Munich , Deutz , Fahr , John , Deere , Landwirtschaft , Öko , Ökologie , Messer , Knife , Stroh , agricultor , agriculteur , Fahrzeug , Vehicle , Vehículo , véhicule , Mähdrescher , Traktor , Bulldog , tracteur , Tractor , agriculture , agricultura , récolte , cosecha , Kuh , Cow , Landschaft , Landscape , Feld , Field , Korn , Corn , Mais , driver , fahrer , Pussy , Paining , with , Light , Gras

The colorful harvest

The colorful harvest

Die Äpfel (Malus) bilden eine Pflanzengattung der Kernobstgewächse (Pyrinae) aus der Familie der Rosengewächse (Rosaceae). Die Gattung umfasst etwa 42 bis 55 Arten laubwerfender Bäume und Sträucher aus Wäldern und Dickichten der nördlichen gemäßigten Zone in Europa, Asien und Nordamerika, aus denen auch eine große Anzahl an oft schwer unterscheidbaren Hybriden hervorgegangen ist.

Die weltweit mit Abstand bekannteste und wirtschaftlich sehr bedeutende Art ist der Kulturapfel (Malus domestica). Daneben werden manche aus Ostasien stammende Arten mit nur etwa kirschgroßen Früchten, wie etwa der Japanische Apfel (Malus floribunda), der Kirschapfel (Malus baccata) und Malus ×zumi in gemäßigten Klimagebieten als Ziersträucher und -bäume angepflanzt. Nicht zu verwechseln mit den Äpfeln sind die nicht näher verwandten Granatäpfel (Punica granatum).
Das Wort Apfel wird auf die urindogermanische Form *h₂ébōl zurückgeführt, die nur Fortsetzungen im westlichen indogermanischen Sprachgebiet (Germanisch, Keltisch, Baltisch und Slawisch) hat und dort in allen Formen den Apfel bezeichnet. In der Forschung herrscht Uneinigkeit darüber, wie die Form genau anzusetzen ist und ob es sich um das urindogermanische Apfelwort handelt oder eine Entlehnung aus einer anderen Sprache. Aus der Akkusativform urindogermanisch *h₂ébl-ṃ > urgermanisch *ablun entwickelt sich das urgermanisches Apfelwort *ablus, aus dem (mit weiterer grammatikalischer Umgestaltung) althochdeutsch apful > Apfel (Mehrzahl epfili > Äpfel), altenglisch æppel > apple, isländisch epli hervorgehen.
Habitus und Belaubung
Die Arten der Gattung Äpfel (Malus) sind sommergrüne Bäume oder Sträucher. Sie sind meist unbewehrt. Die wechselständig angeordneten Laubblätter sind gestielt. Die einfache Blattspreite ist oval bis eiförmig oder elliptisch. Die Blattränder sind meist gesägt, selten glatt und manchmal gelappt. Einige Arten bzw. Sorten werden wegen ihres purpurnen Laubes im Herbst geschätzt. Nebenblätter sind vorhanden, verwelken aber oft früh.

Blütenstände und Blüten
Die gestielten Blüten der Apfelbäume stehen einzeln oder in doldigen schirmrispigen Blütenständen. Die fünfzähligen, zwittrigen, radiärsymmetrischen Blüten sind meist flach becherförmig und weisen meist einen Durchmesser von 2 bis 5 cm auf. Häufig duften die Blüten. Die Blütenachse ist krugförmig. Die fünf grünen Kelchblätter sind auch noch an den Früchten erhalten. Die fünf freien Kronblätter sind weiß, rosa oder rot. In jeder Blüte sind viele (15 bis 50) Staubblätter vorhanden, mit weißen Staubfäden und gelben Staubbeuteln. Aus drei bis fünf Fruchtblättern besteht der unterständige Fruchtknoten. Die drei bis fünf Griffel sind nur an ihrer Basis verwachsen. Bei einigen Züchtungen sind die Blüten, durch Umwandlung der Staubblätter in kronblattähnliche Blütenblätter, halbgefüllt oder gefüllt.
Gemeinhin bekannt sind die mehr oder minder rundlichen, essbaren Früchte. Bei einigen Arten sind sie roh ungenießbar. Das fleischige Gewebe, das normalerweise als Frucht bezeichnet wird, entsteht nicht aus dem Fruchtknoten, sondern aus der Blütenachse; der Biologe spricht daher von Scheinfrüchten. Genauer ist die Apfelfrucht eine Sonderform der Sammelbalgfrucht. Ein Balg besteht aus einem Fruchtblatt, das mit sich selbst verwächst. Innerhalb des Fruchtfleisches entsteht aus dem balgähnlichen Fruchtblatt ein pergamentartiges Gehäuse. Im Fruchtfleisch selbst sind höchstens noch vereinzelt Steinzellennester enthalten. Die Samen sind braun oder schwarz; sie enthalten geringe Mengen an giftigen Cyaniden.
Die Gattung Malus gehört zur Subtribus Pyrinae der Tribus Pyreae in der Unterfamilie Spiraeoideae innerhalb der Familie Rosaceae. Der Gattungsname Malus wurde 1754 durch Philip Miller in Gard. Dict. Abr., 4. Auflage, S. 835, erstveröffentlicht. Synonyme für Malus Mill. sind Docyniopsis (C.K.Schneid.) Koidz., Eriolobus (DC.) M.Roem.[2]

Es gibt etwa 42 bis 55 Malus-Arten; hier eine Auflistung mit Heimatangaben. Zu den bekannten Sorten der fruchtliefernden Apfelbäume siehe Kulturapfel und Apfelsorten. In China sind etwa 25 Arten zu finden, davon 15 nur dort. Die Gattung Malus wird in (sechs[2] bis) acht Sektionen (2006 und 2008 zwei dazu gekommen) gegliedert:

Sektion Chloromeles: Mit nur noch drei gültigen Arten nur in Nordamerika:
Südlicher Wildapfel (Malus angustifolia (Aiton) Michx.): Heimat sind die USA.
Süßer Wildapfel (Malus coronaria (L.) Mill., Syn.: Malus bracteata Rehder, Malus coronaria var. dasycalyx Rehder, Malus fragrans Rehder, Malus glabrata Rehder, Malus glaucescens Rehder, Malus lancifolia Rehder, Pyrus coronaria L.): Heimat ist das östliche Nordamerika.
Savannen- oder Prärie-Wildapfel Malus ioensis (Alph.Wood) Britton: Heimat ist das westliche Nordamerika.
Sektion Docyniopsis: Mit nur vier Arten in Asien:
Malus doumeri (Bois) A.Chev. (Syn.: Malus formosana Kawak. & Koidz., Malus laosensis (Cardot) A.Chev., Pyrus doumeri Bois): Heimat ist China, Taiwan, Laos und Vietnam.
Malus leiocalyca S.Z.Huang: Heimat ist China.
Malus melliana (Hand.-Mazz.) Rehder: Heimat ist China.
Wollapfel (Malus tschonoskii (Maxim.) C.K.Schneid.): Heimat ist Japan.
Sektion Eriolobus (Seringe) C.K.Schneid.: Mit der einzigen Art:
Malus trilobata (Poir.) C.K.Schneid.: Die Heimat ist Kleinasien: Griechenland, Syrien, Libanon, Israel.
Sektion Florentinae Cheng et al.:[3] Malus florentina (Zuccagni) C.K.Schneid. (Syn.: Malus crataegifolia (Savi) Koehne)
Sektion Gymnomeles: Mit etwa sechs Arten:
Kirschapfel, auch Sibirischer Wildapfel oder Beerenapfel genannt (Malus baccata) (L.) Borkh. (Syn: Malus pallasiana Juz., Malus sibirica (Maxim.) Kom., Malus daochengensis C.L.Li, Malus rockii Rehder, Malus jinxianensis J.Q.Deng & J.Y.Hong, Malus xiaojinensis M.H.Cheng & N.G.Jiang): Heimat ist Ostasien.
Halls Apfel (Malus halliana Koehne): Heimat ist Japan und China.
Teeapfel oder Chinesischer Wildapfel (Malus hupehensis (Pamp.)) Rehder: Heimat ist China.
Malus mandshurica (Maxim.) Kom. ex Skvortsov (Syn: Malus cerasifera Spach, Malus sachalinensis Juz., Pyrus baccata var. mandshurica Maxim., Malus baccata ssp. mandshurica (Komarov) Likhonos, M. baccata var. mandshurica (Maxim.) C.K.Schneider): Heimat ist Ostasien.
Malus sikkimensis (Wenz.) Koehne ex C.K.Schneid.: Heimat ist der Himalaja.
Malus spontanea (Makino) Makino
Sektion Malus: Mit etwa elf Arten und einigen Hybriden:
Malus chitralensis Vassilcz.
Japanischer Wildapfel, auch Korallenapfel genannt (Malus floribunda Sieb. ex Van Houtte): Heimat ist Japan.
Malus muliensis T.C.Ku
Kaukasusapfel oder Orientalischer Apfel (Malus orientalis Uglitzk.), Bergwälder und Waldränder des südlichen Kaukasus – Neben M. sieversii zweitwichtigster Vorfahre des Kulturapfels
Malus prunifolia (Willd.) Borkh.: Heimat ist China.
Malus pumila Mill. (Syn.: Malus communis Poiret, M. dasyphylla Borkhausen, M. dasyphylla var. domestica Koidzumi, M. domestica Borkhausen, M. domestica subsp. pumila (Mill.) Likhonos, M. pumila var. domestica C.K.Schneider, Niedzwetzki-Apfel M. niedzwetzkyana Dieck ex Koehne, M. sylvestris ssp. mitis Mansfeld, Pyrus malus L., P. malus var. pumila Henry), (westliches Asien, Zentralasien und Osteuropa)
Asiatischer Wildapfel, auch Altai-Apfel (Malus sieversii (Ledeb.) M.Roem., Syn.: Malus kirghisorum Al.Fed. & Fed., Malus turkmenorum Juz. & Popov), Bergwälder Zentralasiens von Tadschikistan bis Westchina – wahrscheinlich Hauptstammform des Kulturapfels.
Chinesischer Apfel (Malus spectabilis (Aiton) Borkh.), (Asien, wahrscheinlich China)
Holzapfel oder Europäischer Wildapfel genannt (Malus sylvestris (L.) Mill.), westliches Asien und Europa – nach neuesten Untersuchungen vermutlich keine Stammform des Kulturapfels, jedoch möglicherweise darin eingekreuzt.
Malus zhaojiaoensis N.G.Jiang
Malus ×adstringens Zabel (= M. baccata × M. pumila)
Malus ×arnoldiana (Rehder) Sarg. ex Rehder (= M. baccata × M. floribunda, Syn.: Malus floribunda var. arnoldiana Rehder)
Malus ×asiatica Nakai (Syn.: Malus ringo Sieb. ex Carrière): Heimat ist China, dort gibt es viele Sorten für den Fruchtanbau.
Malus ×astracanica hort. ex Dum. Cours. (= M. prunifolia × M. pumila)
Kulturapfel (Malus domestica Borkh.), der Ursprung liegt in Asien. Die Stammformen sind wahrscheinlich der Asiatischer Wildapfel (M. sieversii) und der Kaukasusapfel (M. orientalis). Zudem werden frühe Kreuzungen mit M. dasyphylia und M. praecox angenommen.
Malus ×hartwigii Koehne (= M. baccata × M. halliana)
Malus ×magdeburgensis Hartwig (= M. pumila × M. spectabilis), (Deutschland, Zufallsfund in der Nähe von Magdeburg)
Malus ×micromalus Makino (= M. spectabilis × M. baccata): Wird in China weitverbreitet als Ziergehölz und auf Grund der essbaren Früchte angebaut.
Purpurapfel (Malus ×purpurea (A.Barbier) Rehder, = M. ×atrosanguinea × M. pumila, Syn.: Malus floribunda var. lemoinei É.Lemoine, Malus floribunda var. purpurea A.Barbier, Malus ×purpurea f. eleyi (Bean) Rehder, Malus ×purpurea f. lemoinei (É.Lemoine) Rehder, Malus ×purpurea var. aldenhamensis Rehder)
Malus ×robusta (Carrière) Rehder (= M. baccata × M. prunifolia, Syn.: Malus microcarpa var. robusta Carrière)
Malus ×scheideckeri Späth ex Zabel (= M. floribunda × M. prunifolia)
Sektion Sorbomalus (Zabel) C.K.Schneid.
Malus bhutanica (W.W.Sm.) J.B.Phipps (Syn.: Malus toringoides (Rehder) Hughes)
Oregon-Wildapfel (Malus fusca) (Raf.) C.K.Schneid. (Syn.: Malus diversifolia (Bong.) M.Roem., Malus rivularis (Douglas) M.Roem.), (nordwestliches Nordamerika)
Malus kansuensis (Batalin) C.K.Schneid.: Heimat ist das westliche China.
Malus komarovii (Sarg.) Rehder: Heimat ist China und das nördliche Korea
Malus maerkangensis M.H.Cheng et al.
Malus sargentii Rehder, (Japan)
Malus toringo (Sieb.) de Vriese (Syn.: Malus sieboldii (Regel) Rehder), (östliches Asien, Japan)
Malus transitoria (Batalin) C.K.Schneid. (Syn.: Malus bhutanica (W W.Sm.) J.B.Phipps), (nordwestliches China)
Zierapfel (Malus ×zumi (Matsum.) Rehder), keine Wildform bekannt; es gibt mehrere Sorten, zum Teil mit blutroten Blättern.
Malus ×atrosanguinea (hort. ex Späth) C.K.Schneid. (= M. halliana × M. toringo)
Sektion Yunnanenses (Rehd.) G.Z.Qian:[4] Mit nur vier Arten, die nur in China vorkommen:
Malus honanensis Rehder: Heimat ist China.
Malus ombrophila Hand.-Mazz.: Heimat ist China.
Malus prattii (Hemsl.) C.K.Schneider (Syn.: Malus kaido Dippel): Heimat sind nur die chinesischen Provinzen: westliches Sichuan und nordwestliches Yunnan
Malus yunnanensis (Franch.) C.K.Schneid.: Heimat ist das südwestliche China.
ohne Tribuszugehörigkeit:
Malus brevipes (Rehder) Rehder (ist nur aus Kultur bekannt)
Malus ×platycarpa Rehder (USA)
Malus ×sublobata (Dippel) Rehder (= M. prunifolia × M. toringo, Syn.: Malus ringo var. sublobata Dippel)
Malus ×soulardi
Es gibt auch Gattungskreuzungen innerhalb des Untertribus Pyrinae, zum Beispiel Sorbus × Malus und sogar Dreifachkreuzungen: (Cydonia × Pyrus) × Malus.
Malus (/ˈmeɪləs/[3] or /ˈmæləs/), apple, is a genus of about 30–55 species[4] of small deciduous trees or shrubs in the family Rosaceae, including the domesticated orchard apple (M. domestica). The other species are generally known as crabapples, crab apples, crabs, or wild apples.

The genus is native to the temperate zone of the Northern Hemisphere.
Apple trees are typically 4–12 m (13–39 ft) tall at maturity, with a dense, twiggy crown. The leaves are 3–10 cm (1.2–3.9 in) long, alternate, simple, with a serrated margin. The flowers are borne in corymbs, and have five petals, which may be white, pink or red, and are perfect, with usually red stamens that produce copious pollen, and a half-inferior ovary; flowering occurs in the spring after 50–80 growing degree days (varying greatly according to subspecies and cultivar).

Apples require cross-pollination between individuals by insects (typically bees, which freely visit the flowers for both nectar and pollen); all are self-sterile, and (with the exception of a few specially developed cultivars) self-pollination is impossible, making pollinating insects essential. Several Malus species, including domestic apples, hybridize freely.[6] They are used as food plants by the larvae of a large number of Lepidoptera species; see list of Lepidoptera that feed on Malus.

The fruit is a globose pome, varying in size from 1–4 cm (0.39–1.57 in) diameter in most of the wild species, to 6 cm (2.4 in) in M. sylvestris sieversii, 8 cm (3.1 in) in M. domestica, and even larger in certain cultivated orchard apples. The centre of the fruit contains five carpels arranged star-like, each containing one or two seeds.

For the Malus domestica cultivars, the cultivated apples, see Apple.

Crabapples are popular as compact ornamental trees, providing blossom in Spring and colourful fruit in Autumn. The fruits often persist throughout Winter. Numerous hybrid cultivars have been selected, of which ‘Evereste'[7] and ‘Red Sentinel'[8] have gained The Royal Horticultural Society’s Award of Garden Merit.

Other varieties are dealt with under their species names.

Some crabapples are used as rootstocks for domestic apples to add beneficial characteristics.[9] For example, varieties of Baccata, also called Siberian crab, rootstock is used to give additional cold hardiness to the combined plant for orchards in cold northern areas.[10]

They are also used as pollinizers in apple orchards. Varieties of crabapple are selected to bloom contemporaneously with the apple variety in an orchard planting, and the crabs are planted every sixth or seventh tree, or limbs of a crab tree are grafted onto some of the apple trees. In emergencies, a bucket or drum bouquet of crabapple flowering branches are placed near the beehives as orchard pollenizers. See also Fruit tree pollination. Because of the plentiful blossoms and small fruit, crabapples are popular for use in bonsai culture.

Crabapple fruit is not an important crop in most areas, being extremely sour and (in some species) woody, and is rarely eaten raw for this reason. In some southeast Asian cultures they are valued as a sour condiment, sometimes eaten with salt and chilli pepper, or shrimp paste.

Some crabapples varieties are an exception to the reputation of being sour, and can be very sweet, such as the ‘Chestnut’ cultivar.[11]

Crabapples are an excellent source of pectin, and their juice can be made into a ruby-coloured preserve with a full, spicy flavour.[12] A small percentage of crabapples in cider makes a more interesting flavour.[13] As Old English Wergulu, the crab apple is one of the nine plants invoked in the pagan Anglo-Saxon Nine Herbs Charm, recorded in the 10th century.

Apple wood gives off a pleasant scent when burned, and smoke from an apple wood fire gives an excellent flavour to smoked foods.[14] It is easier to cut when green; dry apple wood is exceedingly difficult to carve by hand.[14] It is a good wood for cooking fires because it burns hot and slow, without producing much flame.[14]

Crabapple has been listed as one of the 38 plants that are used to prepare Bach flower remedies,[15] a kind of alternative medicine promoted for its effect on health. However according to Cancer Research UK, "there is no scientific evidence to prove that flower remedies can control, cure or prevent any type of disease, including cancer".
Quelle:
en.wikipedia.org/wiki/Malus
de.wikipedia.org/wiki/%C3%84pfel
Apfelsaft (in der Schweiz und Österreich auch Süßmost) ist ein Fruchtsaft, der durch Pressung von Äpfeln gewonnen wird. Aus 1,5 kg Äpfeln kann ca. 1 Liter Apfelsaft gewonnen werden. Im großen Maßstab geschieht dies in Keltereien. Als Apfelschorle wird er mit Mineralwasser verdünnt getrunken. 2013 betrug in Deutschland der Pro-Kopf-Verbrauch an Apfelsaft 8,4 Liter und an Apfelsaftschorle 8,5 Liter.
Nach dem Pressen ist der Apfelsaft immer naturtrüb, d. h. fruchtfleischhaltig. Zentrifugiert und gefiltert erhält man den klaren Apfelsaft. Beide Varianten – naturtrüb und klar – werden durch Pasteurisation haltbar gemacht. Dabei wird der Saft kurz auf ca. 85 °C erhitzt, um Mikroorganismen abzutöten und die Gärung zu verhindern. Da der naturtrübe Apfelsaft nicht gefiltert wurde, befinden sich in ihm noch die Schwebstoffe. Sie lassen den Saft undurchsichtig erscheinen. Da sie schwerer sind als Wasser, setzen sie sich am Boden ab und sollten vor dem Trinken aufgeschüttelt werden. Aufgrund der in den Schwebstoffen enthaltenen Antioxidantien – es handelt sich hauptsächlich um Polyphenole – enthält naturtrüber Apfelsaft mehr sekundäre Pflanzenstoffe als gefilterter Saft.[2] In Tierversuchen entwickelten Mäuse und Ratten, denen Apfelsaft verabreicht wurde, bis zu 50 % weniger Tumoren, als die Vergleichsgruppe ohne die Apfelsaftgaben.[3][4] Der trübe Apfelsaft war in diesen Versuchen wirksamer als der klare.[5] Vermutlich sind hier die Procyanidine, die in trübem Apfelsaft in hoher Konzentration enthalten sind, die Ursache.[6] Darüber hinaus schmeckt der naturtrübe Apfelsaft meist auch natürlicher und kräftiger als der schwebstofffreie klare Saft. Sortenreine Apfelsäfte, die nur aus einer Apfelsorte gewonnen werden, erweitern die Angebotspalette an Apfelsaft mit einer hohen geschmacklichen Vielfalt.

Zur Herstellung von klarem Apfelsaft wird überwiegend Apfelsaftkonzentrat verwendet. Apfelsaftkonzentrat erhält man durch Entzug von Wasser und Abtrennen von Aromen. Dadurch reduziert sich das Volumen auf ca. ein Sechstel, sodass die Lagerung und der Transport günstiger werden. Durch Hinzufügen von speziell aufbereitetem Trinkwasser und den getrennt gelagerten Aromen erreicht man ein zum ursprünglichen Ausgangsprodukt gleichartiges Produkt. In der Fachsprache nennt sich das rekonstituieren. Die Verarbeitung von Apfelsaftkonzentrat bringt zusätzlich den Vorteil, durch Verschneiden (Mischen) unterschiedlich ausgeprägter Apfelsaftkonzentrate (süße/saure) einen gleichbleibenden Geschmack zu erreichen. Ansonsten würden je nach Apfelsorte und/oder Anbaugebiet unterschiedliche Geschmacksrichtungen im Apfelsaft auftreten.

Die Verfahren des Wasserentzuges und der Rückverdünnung beeinträchtigen auf modernen Konzentratanlagen den Geschmack und den Vitamingehalt kaum. In der deutschen Fruchtsaftverordnung (FrSaftV 2004) und in den Fruchtsaftrichtlinien der EU muss der rückverdünnte Saft gleichartige organoleptische und analytische Eigenschaften aufweisen wie ein nicht aus Konzentrat hergestellter Saft (Direktsaft) aus frischen Früchten derselben Art. Die analytische Gleichartigkeit der nicht flüchtigen Hauptinhaltsstoffe kann über Grad Brix, Zuckerspektrum, Aminosäurespektrum und Mineralstoffe beurteilt werden. Kennzahlen zur Beurteilung sind im AIJN Code of Practice[7] beschrieben. Für die Beurteilung der analytischen Gleichartigkeit des Apfelsaftaromas wird ein Aromaindex Apfel ermittelt.

Apfelsaft dient auch als Vorprodukt für Apfelwein (Cidre, Viez, Most), Apfelkraut und Apfelessig; darüber hinaus wird er auch zur Herstellung von Spirituosen, wie Obstbrand, Apfelkorn oder des bekannten Calvados verwendet.

In der Region um Frankfurt am Main wird der frische, trübe, nicht pasteurisierte Apfelsaft „Süßer“ genannt und zur Erntezeit genossen.

Streuobstwiesen sind eine traditionelle Form des Apfelanbaus. Deutsche Fruchtsafthersteller setzen sich aus Naturschutz- und Qualitätsgründen für dessen Erhaltung und Förderung ein. In Deutschland wird der Apfel bei der Fruchtsaftherstellung zu 100 Prozent verarbeitet. Etwa 75 Prozent ist die Saftausbeute, 25 Prozent bleiben als ausgepresste Maische mit Schalen und Kernen übrig – das ist der so genannte Trester. Er geht etwa zur Hälfte in die Herstellung von Apfelpektin, das z. B. als pflanzliches Geliermittel verwendet werden kann. Die andere Hälfte geht in die Tierfütterung oder Energiegewinnung.
Apple juice is a fruit juice made by the maceration and pressing of apples. The resulting expelled juice may be further treated by enzymatic and centrifugal clarification to remove the starch and pectin, which holds fine particulate in suspension, and then pasteurized for packaging in glass, metal or aseptic processing system containers, or further treated by dehydration processes to a concentrate.

Russet apple juice from Bolney, Mid Sussex, England, in a glass.
Due to the complex and costly equipment required to extract and clarify juice from apples in large volume, apple juice is normally commercially produced. In the United States, unfiltered fresh apple juice is made by smaller operations in areas of high apple production, in the form of unclarified apple cider. Apple juice is one of the most common fruit juices in the world, with world production led by China, Poland, the United States, and Germany.

Vitamin C is sometimes added by fortification, because content is variable,[2] and much of that is lost in processing.[citation needed] Vitamin C also helps to prevent oxidation of the product.[3] Other vitamin concentrations are low, but apple juice does contain various mineral nutrients, including boron, which may promote healthy bones.[4] Apple juice has a significant concentration of natural phenols of low molecular weight (including chlorogenic acid, flavan-3-ols, and flavonols) and procyanidins[5] that may protect from diseases associated with aging due to the antioxidant effects which help reduce the likelihood of developing cancer and Alzheimer’s disease.[6] Research suggests that apple juice increases acetylcholine in the brain, possibly resulting in improved memory.[7] Despite having some health benefits, apple juice is high in sugar. It has 28 g carbohydrates (24 g sugars) per 230 g (8 ounces). This results in 130 calories per 230 g (8 ounces) – protein and fat are not significant. Also like most fruit juice, apple juice contains a similar amount of sugar as the raw fruit, but lacks the fiber content.
While apple juice generally refers to the filtered, pasteurised product of apple pressing, an unfiltered and sometimes unpasteurised product commonly known as apple cider in the United States and parts of Canada may be packaged and sold as apple juice. In the U.S., the opposite is often seen; filtered and clarified juice (including carbonated varieties) may be sold as "apple cider", thus there is an unclear distinction between filtered apple juice and natural apple cider.[8] In other places such as New Zealand, Australia and the United Kingdom, apple cider is an alcoholic beverage. The alcoholic beverage referred to as cider in these areas is usually referred to as hard cider in the United States.

Recycling is a process to change (waste) materials into new products to prevent waste of potentially useful materials, reduce the consumption of fresh raw materials, reduce energy usage, reduce air pollution (from incineration) and water pollution (from landfilling) by reducing the need for "conventional" waste disposal, and lower greenhouse gas emissions as compared to plastic production.[1][2] Recycling is a key component of modern waste reduction and is the third component of the "Reduce, Reuse and Recycle" waste hierarchy.

There are some ISO standards related to recycling such as ISO 15270:2008 for plastics waste and ISO 14001:2004 for environmental management control of recycling practice.

Recyclable materials include many kinds of glass, paper, metal, plastic, textiles, and electronics. Although similar in effect, the composting or other reuse of biodegradable waste—such as food or garden waste—is considered recycling.[2] Materials to be recycled are either brought to a collection center or picked up from the curbside, then sorted, cleaned, and reprocessed into new materials bound for manufacturing.

In the strictest sense, recycling of a material would produce a fresh supply of the same material—for example, used office paper would be converted into new office paper, or used foamed polystyrene into new polystyrene. However, this is often difficult or too expensive (compared with producing the same product from raw materials or other sources), so "recycling" of many products or materials involves their reuse in producing different materials (e.g., paperboard) instead. Another form of recycling is the salvage of certain materials from complex products, either due to their intrinsic value (e.g., lead from car batteries, or gold from computer components), or due to their hazardous nature (e.g., removal and reuse of mercury from various items). Critics dispute the net economic and environmental benefits of recycling over its costs, and suggest that proponents of recycling often make matters worse and suffer from confirmation bias. Specifically, critics argue that the costs and energy used in collection and transportation detract from (and outweigh) the costs and energy saved in the production process; also that the jobs produced by the recycling industry can be a poor trade for the jobs lost in logging, mining, and other industries associated with virgin production; and that materials such as paper pulp can only be recycled a few times before material degradation prevents further recycling. Proponents of recycling dispute each of these claims, and the validity of arguments from both sides has led to enduring controversy.
Recycling has been a common practice for most of human history, with recorded advocates as far back as Plato in 400 BC. During periods when resources were scarce, archaeological studies of ancient waste dumps show less household waste (such as ash, broken tools and pottery)—implying more waste was being recycled in the absence of new material.

In pre-industrial times, there is evidence of scrap bronze and other metals being collected in Europe and melted down for perpetual reuse.[4] In Britain dust and ash from wood and coal fires was collected by ‘dustmen’ and downcycled as a base material used in brick making. The main driver for these types of recycling was the economic advantage of obtaining recycled feedstock instead of acquiring virgin material, as well as a lack of public waste removal in ever more densely populated areas.[3] In 1813, Benjamin Law developed the process of turning rags into ‘shoddy’ and ‘mungo’ wool in Batley, Yorkshire. This material combined recycled fibres with virgin wool. The West Yorkshire shoddy industry in towns such as Batley and Dewsbury, lasted from the early 19th century to at least 1914.

Industrialization spurred demand for affordable materials; aside from rags, ferrous scrap metals were coveted as they were cheaper to acquire than was virgin ore. Railroads both purchased and sold scrap metal in the 19th century, and the growing steel and automobile industries purchased scrap in the early 20th century. Many secondary goods were collected, processed, and sold by peddlers who combed dumps, city streets, and went door to door looking for discarded machinery, pots, pans, and other sources of metal. By World War I, thousands of such peddlers roamed the streets of American cities, taking advantage of market forces to recycle post-consumer materials back into industrial production.[5]

Beverage bottles were recycled with a refundable deposit at some drink manufacturers in Great Britain and Ireland around 1800, notably Schweppes.[6] An official recycling system with refundable deposits was established in Sweden for bottles in 1884 and aluminium beverage cans in 1982, by law, leading to a recycling rate for beverage containers of 84–99 percent depending on type, and average use of a glass bottle is over 20 refills.

Wartime
Recycling was a highlight throughout World War II. During the war, financial constraints and significant material shortages due to war efforts made it necessary for countries to reuse goods and recycle materials.[7] It was these resource shortages caused by the world wars, and other such world-changing occurrences that greatly encouraged recycling.[8] The struggles of war claimed much of the material resources available, leaving little for the civilian population.[7] It became necessary for most homes to recycle their waste, as recycling offered an extra source of materials allowing people to make the most of what was available to them. Recycling materials that were used in the household, meant more resources were available to support war efforts. This in turn meant a better chance of victory at war.[7] Massive government promotion campaigns were carried out in World War II in every country involved in the war, urging citizens to donate metals and conserve fibre, as a matter of significant patriotic importance. There was patriotism in recycling.

Post-war
A considerable investment in recycling occurred in the 1970s, due to rising energy costs.[citation needed] Recycling aluminium uses only 5% of the energy required by virgin production; glass, paper and metals have less dramatic but very significant energy savings when recycled feedstock is used.

As of 2014, the European Union has about 50% of world share of the waste and recycling industries, with over 60,000 companies employing 500,000 persons, with a turnover of €24 billion.[10] Countries have to reach recycling rates of at least 50%, while the lead countries are around 65% and the EU average is 39% as of 2013.
For a recycling program to work, having a large, stable supply of recyclable material is crucial. Three legislative options have been used to create such a supply: mandatory recycling collection, container deposit legislation, and refuse bans. Mandatory collection laws set recycling targets for cities to aim for, usually in the form that a certain percentage of a material must be diverted from the city’s waste stream by a target date. The city is then responsible for working to meet this target.[2]

Container deposit legislation involves offering a refund for the return of certain containers, typically glass, plastic, and metal. When a product in such a container is purchased, a small surcharge is added to the price. This surcharge can be reclaimed by the consumer if the container is returned to a collection point. These programs have been very successful, often resulting in an 80 percent recycling rate. Despite such good results, the shift in collection costs from local government to industry and consumers has created strong opposition to the creation of such programs in some areas.[2]

A third method of increase supply of recyclates is to ban the disposal of certain materials as waste, often including used oil, old batteries, tires and garden waste. One aim of this method is to create a viable economy for proper disposal of banned products. Care must be taken that enough of these recycling services exist, or such bans simply lead to increased illegal dumping.[2]

Government-mandated demand
Legislation has also been used to increase and maintain a demand for recycled materials. Four methods of such legislation exist: minimum recycled content mandates, utilization rates, procurement policies, recycled product labeling.

Both minimum recycled content mandates and utilization rates increase demand directly by forcing manufacturers to include recycling in their operations. Content mandates specify that a certain percentage of a new product must consist of recycled material. Utilization rates are a more flexible option: industries are permitted to meet the recycling targets at any point of their operation or even contract recycling out in exchange for [trade]able credits. Opponents to both of these methods point to the large increase in reporting requirements they impose, and claim that they rob industry of necessary flexibility.

Governments have used their own purchasing power to increase recycling demand through what are called "procurement policies." These policies are either "set-asides," which earmark a certain amount of spending solely towards recycled products, or "price preference" programs which provide a larger budget when recycled items are purchased. Additional regulations can target specific cases: in the United States, for example, the Environmental Protection Agency mandates the purchase of oil, paper, tires and building insulation from recycled or re-refined sources whenever possible.[2]

The final government regulation towards increased demand is recycled product labeling. When producers are required to label their packaging with amount of recycled material in the product (including the packaging), consumers are better able to make educated choices. Consumers with sufficient buying power can then choose more environmentally conscious options, prompt producers to increase the amount of recycled material in their products, and indirectly increase demand. Standardized recycling labeling can also have a positive effect on supply of recyclates if the labeling includes information on how and where the product can be recycled.[2]

Recyclates
Recyclate is a raw material that is sent to, and processed in a waste recycling plant or materials recovery facility which will be used to form new products.[13] The material is collected in various methods and delivered to a facility where it undergoes re-manufacturing so that it can used in the production of new materials or products. For example, plastic bottles that are collected can be re-used and made into plastic pellets, a new product.[14]

Quality of recyclate
The quality of recyclates is recognized as one of the principal challenges that needs to be addressed for the success of a long term vision of a green economy and achieving zero waste. Recyclate quality is generally referring to how much of the raw material is made up of target material compared to the amount of non-target material and other non- recyclable material.[15] Only target material is likely to be recycled, so a higher amount of non-target and non-recyclable material will reduce the quantity of recycling product.[15] A high proportion of non-target and non-recyclable material can make it more difficult for re-processors to achieve ‘high-quality’ recycling. If the recyclate is of poor quality, it is more likely to end up being down-cycled or, in more extreme cases, sent to other recovery options or landfill.[15] For example, to facilitate the re-manufacturing of clear glass products there are tight restrictions for colored glass going into the re-melt process.

The quality of recyclate not only supports high quality recycling, it can deliver significant environmental benefits by reducing, reusing, and keeping products out of landfills.[15] High quality recycling can help support growth in the economy by maximizing the economic value of the waste material collected.[15] Higher income levels from the sale of quality recyclates can return value which can be significant to local governments, households and businesses.[15] Pursuing high quality recycling can also provide consumer and business confidence in the waste and resource management sector and may encourage investment in that sector.

There are many actions along the recycling supply chain that can influence and affect the material quality of recyclate.[16] It begins with the waste producers who place non-target and non-recyclable wastes in recycling collection. This can affect the quality of final recyclate streams or require further efforts to discard those materials at later stages in the recycling process.[16] The different collection systems can result in different levels of contamination. Depending on which materials are collected together, extra effort is required to sort this material back into separate streams and can significantly reduce the quality of the final product.[16] Transportation and the compaction of materials can make it more difficult to separate material back into separate waste streams. Sorting facilities are not one hundred per cent effective in separating materials, despite improvements in technology and quality recyclate which can see a loss in recyclate quality.[16] The storage of materials outside where the product can become wet can cause problems for re-processors. Reprocessing facilities may require further sorting steps to further reduce the amount of non-target and non-recyclable material.[16] Each action along the recycling path plays a part in the quality of recyclate.

Quality recyclate action plan (Scotland)
The Recyclate Quality Action Plan of Scotland sets out a number of proposed actions that the Scottish Government would like to take forward in order to drive up the quality of the materials being collected for recycling and sorted at materials recovery facilities before being exported or sold on to the reprocessing market.[16]

The plan’s objectives are to:

Drive up the quality of recyclate.
Deliver greater transparency around the quality of recyclate.
Provide help to those contracting with materials recycling facilities to identify what is required of them
Ensure compliance with the Waste (Scotland) regulations 2012.
Stimulate a household market for quality recyclate.
Address and reduce issues surrounding the Waste Shipment Regulations.
The plan focuses on three key areas, with fourteen actions which were identified to increase the quality of materials collected, sorted and presented to the processing market in Scotland.[17]

The three areas of focus are:

Collection systems and input contamination
Sorting facilities – material sampling and transparency
Material quality benchmarking and standards
Recycling consumer waste
A number of different systems have been implemented to collect recyclates from the general waste stream. These systems lie along the spectrum of trade-off between public convenience and government ease and expense. The three main categories of collection are "drop-off centres," "buy-back centres," and "curbside collection".

Drop-off centres
Drop-off centres require the waste producer to carry the recyclates to a central location, either an installed or mobile collection station or the reprocessing plant itself. They are the easiest type of collection to establish, but suffer from low and unpredictable throughput.

Buy-back centres
Buy-back centres differ in that the cleaned recyclates are purchased, thus providing a clear incentive for use and creating a stable supply. The post-processed material can then be sold on, hopefully creating a profit. Unfortunately, government subsidies are necessary to make buy-back centres a viable enterprise, as according to the United States’ National Waste & Recycling Association, it costs on average US$50 to process a ton of material, which can only be resold for US$30.[2]

Curbside collection
Main article: Curbside collection
Curbside collection encompasses many subtly different systems, which differ mostly on where in the process the recyclates are sorted and cleaned. The main categories are mixed waste collection, commingled recyclables and source separation.[2] A waste collection vehicle generally picks up the waste.
At one end of the spectrum is mixed waste collection, in which all recyclates are collected mixed in with the rest of the waste, and the desired material is then sorted out and cleaned at a central sorting facility. This results in a large amount of recyclable waste, paper especially, being too soiled to reprocess, but has advantages as well: the city need not pay for a separate collection of recyclates and no public education is needed. Any changes to which materials are recyclable is easy to accommodate as all sorting happens in a central location.[2]

In a commingled or single-stream system, all recyclables for collection are mixed but kept separate from other waste. This greatly reduces the need for post-collection cleaning but does require public education on what materials are recyclable.[2][4]

Source separation is the other extreme, where each material is cleaned and sorted prior to collection. This method requires the least post-collection sorting and produces the purest recyclates, but incurs additional operating costs for collection of each separate material. An extensive public education program is also required, which must be successful if recyclate contamination is to be avoided.[2]

Source separation used to be the preferred method due to the high sorting costs incurred by commingled (mixed waste) collection. Advances in sorting technology (see sorting below), however, have lowered this overhead substantially—many areas which had developed source separation programs have since switched to comingled collection.[4]

Distributed Recycling
For some waste materials such as plastic, recent technical devices called recyclebots[18] enable a form of distributed recycling. Preliminary life-cycle analysis(LCA) indicates that such distributed recycling of HDPE to make filament of 3-D printers in rural regions is energetically favorable to either using virgin resin or conventional recycling processes because of reductions in transportation energy[19]

Sorting

Once commingled recyclates are collected and delivered to a central collection facility, the different types of materials must be sorted. This is done in a series of stages, many of which involve automated processes such that a truckload of material can be fully sorted in less than an hour.[4] Some plants can now sort the materials automatically, known as single-stream recycling. In plants a variety of materials are sorted such as paper, different types of plastics, glass, metals, food scraps, and most types of batteries.[20] A 30 percent increase in recycling rates has been seen in the areas where these plants exist.[21]

Initially, the commingled recyclates are removed from the collection vehicle and placed on a conveyor belt spread out in a single layer. Large pieces of corrugated fiberboard and plastic bags are removed by hand at this stage, as they can cause later machinery to jam.

Next, automated machinery separates the recyclates by weight, splitting lighter paper and plastic from heavier glass and metal. Cardboard is removed from the mixed paper, and the most common types of plastic, PET (#1) and HDPE (#2), are collected. This separation is usually done by hand, but has become automated in some sorting centers: a spectroscopic scanner is used to differentiate between different types of paper and plastic based on the absorbed wavelengths, and subsequently divert each material into the proper collection channel.[4]

Strong magnets are used to separate out ferrous metals, such as iron, steel, and tin-plated steel cans ("tin cans"). Nonferrous metals are ejected by magnetic eddy currents in which a rotating magnetic field induces an electric current around the aluminium cans, which in turn creates a magnetic eddy current inside the cans. This magnetic eddy current is repulsed by a large magnetic field, and the cans are ejected from the rest of the recyclate stream.[4]

Finally, glass must be sorted by hand on the basis of its color: brown, amber, green, or clear.[4]

This process of recycling as well as reusing the recycled material proves to be advantageous for many reasons as it reduces amount of waste sent to landfills, conserves natural resources, saves energy, reduces greenhouse gas emissions, and helps create new jobs. Recycled materials can also be converted into new products that can be consumed again such as paper, plastic, and glass.[22]

The City and County of San Francisco’s Department of the Environment offers one of the best recycling programs to support its city-wide goal of Zero Waste by 2020.[23] San Francisco’s refuse hauler, Recology, operates an effective recyclables sorting facility in San Francisco, which helped San Francisco reach a record-breaking diversion rate of 80%.[24]

Recycling industrial waste

Although many government programs are concentrated on recycling at home, a large portion of waste is generated by industry. The focus of many recycling programs done by industry is the cost-effectiveness of recycling. The ubiquitous nature of cardboard packaging makes cardboard a commonly recycled waste product by companies that deal heavily in packaged goods, like retail stores, warehouses, and distributors of goods. Other industries deal in niche or specialized products, depending on the nature of the waste materials that are present.

The glass, lumber, wood pulp, and paper manufacturers all deal directly in commonly recycled materials. However, old rubber tires may be collected and recycled by independent tire dealers for a profit.

Levels of metals recycling are generally low. In 2010, the International Resource Panel, hosted by the United Nations Environment Programme (UNEP) published reports on metal stocks that exist within society[25] and their recycling rates.[26] The Panel reported that the increase in the use of metals during the 20th and into the 21st century has led to a substantial shift in metal stocks from below ground to use in applications within society above ground. For example, the in-use stock of copper in the USA grew from 73 to 238 kg per capita between 1932 and 1999.

The report authors observed that, as metals are inherently recyclable, the metals stocks in society can serve as huge mines above ground (the term "urban mining" has been coined with this idea in mind[27]). However, they found that the recycling rates of many metals are very low. The report warned that the recycling rates of some rare metals used in applications such as mobile phones, battery packs for hybrid cars and fuel cells, are so low that unless future end-of-life recycling rates are dramatically stepped up these critical metals will become unavailable for use in modern technology.

The military recycles some metals. The U.S. Navy’s Ship Disposal Program uses ship breaking to reclaim the steel of old vessels. Ships may also be sunk to create an artificial reef. Uranium is a very dense metal that has qualities superior to lead and titanium for many military and industrial uses. The uranium left over from processing it into nuclear weapons and fuel for nuclear reactors is called depleted uranium, and it is used by all branches of the U.S. military use for armour-piercing shells and shielding.

The construction industry may recycle concrete and old road surface pavement, selling their waste materials for profit.

Some industries, like the renewable energy industry and solar photovoltaic technology in particular, are being proactive in setting up recycling policies even before there is considerable volume to their waste streams, anticipating future demand during their rapid growth.[28]

Recycling of plastics is more difficult, as most programs can’t reach the necessary level of quality. Recycling of PVC often results in downcycling of the material, which means only products of lower quality standard can be made with the recycled material. A new approach which allows an equal level of quality is the Vinyloop process. It was used after the London Olympics 2012 to fulfill the PVC Policy.[29]

e-Waste recycling
Main article: Computer recycling
E-waste is a growing problem, accounting for 20-50 million metric tons of global waste per year according to the EPA. Many recyclers do not recycle e-waste or do not do so responsibly. The e-Stewards certification was created to ensure recyclers are held to the highest standards for environmental responsibility and to give consumers an easy way to identify responsible recyclers. e-Cycle, LLC, was the first mobile recycling company to be e-Stewards certified.

Plastic recycling
Main article: Plastic recycling
Plastic recycling is the process of recovering scrap or waste plastic and reprocessing the material into useful products, sometimes completely different in form from their original state. For instance, this could mean melting down soft drink bottles and then casting them as plastic chairs and tables.[30]

Physical Recycling
Some plastics are remelted to form new plastic objects, for example PET water bottles can be converted into clothing grade polyester. A disadvantage of this type of recycling is that in each use and recycling cycle the molecular weight of the polymer can change further and the levels of unwanted substances in the plastic can increase.

Chemical Recycling
For some polymers it is possible to convert them back into monomers, for example PET can be treated with an alcohol and a catalyst to form a dialkyl terephthalate. The terephthalate diester can be used with ethylene glycol to form a new polyester polymer. Thus it is possible to make the pure polymer again.

Waste Plastic Pyrolysis to fuel oil
Another process involves the conversion of assorted polymers into petroleum by a much less precise thermal depolymerization process. Such a process would be able to accept almost any polymer or mix of polymers, including thermoset materials such as vulcanized rubber tires and the biopolymers in feathers and other agricultural waste. Like natural petroleum, the chemicals produced can be made into fuels as well as polymers. RESEM Technology[31] plant of this type exists in Carthage, Missouri, USA, using turkey waste as input material. Gasification is a similar process, but is not technically recycling since polymers are not likely to become the result. Plastic Pyrolysis can convert petroleum based waste streams such as plastics into quality fuels, carbons. Given below is the list of suitable plastic raw materials for pyrolysis:

Mixed plastic (HDPE, LDPE, PE, PP, Nylon, Teflon, PS, ABS, FRP etc.)
Mixed waste plastic from waste paper mill
Multi Layered Plastic
Recycling codes
Main article: Recycling codes
In order to meet recyclers’ needs while providing manufacturers a consistent, uniform system, a coding system is developed. The recycling code for plastics was introduced in 1988 by plastics industry through the Society of the Plastics Industry, Inc.[32] Because municipal recycling programs traditionally have targeted packaging—primarily bottles and containers—the resin coding system offered a means of identifying the resin content of bottles and containers commonly found in the residential waste stream.

Plastic products are printed with numbers 1–7 depending on the type of resin. Type 1 plastic, PET (or PETE): polyethylene terephthalate, is commonly found in soft drink and water bottles. Type 2, HDPE: high-density polyethylene is found in most hard plastics such as milk jugs, laundry detergent bottles, and some dishware. Type 3, PVC or V (vinyl), includes items like shampoo bottles, shower curtains, hoola hoops, credit cards, wire jacketing, medical equipment, siding, and piping. Type 4, called LDPE, or low-density polyethylene, is found in shopping bags, squeezable bottles, tote bags, clothing, furniture, and carpet. Type 5 is PP which stands for polypropylene and makes up syrup bottles, straws, Tupperware, and some automotive parts. Type 6 is PS: polystyrene and makes up meat trays, egg cartons, clamshell containers and compact disc cases. Type 7 includes all other plastics like bulletproof materials, 3- and 5-gallon water bottles, and sunglasses.[34] Types 1 and 2 are the most commonly recycled.

There is some debate over whether recycling is economically efficient. It is said[by whom?] that dumping 10,000 tons of waste in a landfill creates six jobs, while recycling 10,000 tons of waste can create over 36 jobs. However, the cost effectiveness of creating the additional jobs remains unproven. According to the U.S. Recycling Economic Informational Study, there are over 50,000 recycling establishments that have created over a million jobs in the US.[37] Two years after New York City declared that implementing recycling programs would be "a drain on the city," New York City leaders realized that an efficient recycling system could save the city over $20 million.[38] Municipalities often see fiscal benefits from implementing recycling programs, largely due to the reduced landfill costs.[39] A study conducted by the Technical University of Denmark according to the Economist found that in 83 percent of cases, recycling is the most efficient method to dispose of household waste.[4][9] However, a 2004 assessment by the Danish Environmental Assessment Institute concluded that incineration was the most effective method for disposing of drink containers, even aluminium ones.[40]

Fiscal efficiency is separate from economic efficiency. Economic analysis of recycling do not include what economists call externalities, which are unpriced costs and benefits that accrue to individuals outside of private transactions. Examples include: decreased air pollution and greenhouse gases from incineration, reduced hazardous waste leaching from landfills, reduced energy consumption, and reduced waste and resource consumption, which leads to a reduction in environmentally damaging mining and timber activity. About 4,000 minerals are known, of these only a few hundred minerals in the world are relatively common.[41] Known reserves of phosphorus will be exhausted within the next 100 years at current rates of usage.[42][43] Without mechanisms such as taxes or subsidies to internalize externalities, businesses will ignore them despite the costs imposed on society.[opinion] To make such nonfiscal benefits economically relevant, advocates have pushed for legislative action to increase the demand for recycled materials.[2] The United States Environmental Protection Agency (EPA) has concluded in favor of recycling, saying that recycling efforts reduced the country’s carbon emissions by a net 49 million metric tonnes in 2005.[4] In the United Kingdom, the Waste and Resources Action Programme stated that Great Britain’s recycling efforts reduce CO2 emissions by 10–15 million tonnes a year.[4] Recycling is more efficient in densely populated areas, as there are economies of scale involved.

Certain requirements must be met for recycling to be economically feasible and environmentally effective. These include an adequate source of recyclates, a system to extract those recyclates from the waste stream, a nearby factory capable of reprocessing the recyclates, and a potential demand for the recycled products. These last two requirements are often overlooked—without both an industrial market for production using the collected materials and a consumer market for the manufactured goods, recycling is incomplete and in fact only "collection".[2]

Many[who?] economists favor a moderate level of government intervention to provide recycling services. Economists of this mindset probably view product disposal as an externality of production and subsequently argue government is most capable of alleviating such a dilemma.

Trade in recyclates
Certain countries trade in unprocessed recyclates. Some have complained that the ultimate fate of recyclates sold to another country is unknown and they may end up in landfills instead of reprocessed. According to one report, in America, 50–80 percent of computers destined for recycling are actually not recycled.[44][45] There are reports of illegal-waste imports to China being dismantled and recycled solely for monetary gain, without consideration for workers’ health or environmental damage. Although the Chinese government has banned these practices, it has not been able to eradicate them.[46] In 2008, the prices of recyclable waste plummeted before rebounding in 2009. Cardboard averaged about £53/tonne from 2004–2008, dropped to £19/tonne, and then went up to £59/tonne in May 2009. PET plastic averaged about £156/tonne, dropped to £75/tonne and then moved up to £195/tonne in May 2009.[47] Certain regions have difficulty using or exporting as much of a material as they recycle. This problem is most prevalent with glass: both Britain and the U.S. import large quantities of wine bottled in green glass. Though much of this glass is sent to be recycled, outside the American Midwest there is not enough wine production to use all of the reprocessed material. The extra must be downcycled into building materials or re-inserted into the regular waste stream.[2][4]

Similarly, the northwestern United States has difficulty finding markets for recycled newspaper, given the large number of pulp mills in the region as well as the proximity to Asian markets. In other areas of the U.S., however, demand for used newsprint has seen wide fluctuation.[2]

In some U.S. states, a program called RecycleBank pays people to recycle, receiving money from local municipalities for the reduction in landfill space which must be purchased. It uses a single stream process in which all material is automatically sorted.

Much of the difficulty inherent in recycling comes from the fact that most products are not designed with recycling in mind. The concept of sustainable design aims to solve this problem, and was laid out in the book "Cradle to Cradle: Remaking the Way We Make Things" by architect William McDonough and chemist Michael Braungart. They suggest that every product (and all packaging they require) should have a complete "closed-loop" cycle mapped out for each component—a way in which every component will either return to the natural ecosystem through biodegradation or be recycled indefinitely.[4] While recycling diverts waste from entering directly into landfill sites, current recycling misses the dissipative components. Complete recycling is impracticable as highly dispersed wastes become so diluted that the energy needed for their recovery becomes increasingly excessive. "For example, how will it ever be possible to recycle the numerous chlorinated organic hydrocarbons that have bioaccumulated in animal and human tissues across the globe, the copper dispersed in fungicides, the lead in widely applied paints, or the zinc oxides present in the finely dispersed rubber powder that is abraded from automobile tires?"[50]:260 As with environmental economics, care must be taken to ensure a complete view of the costs and benefits involved. For example, paperboard packaging for food products is more easily recycled than most plastic, but is heavier to ship and may result in more waste from spoilage.[51]

Energy and material flows
The amount of energy saved through recycling depends upon the material being recycled and the type of energy accounting that is used. Emergy (spelled with an m) analysis, for example, budgets for the amount of energy of one kind (exergy) that is required to make or transform things into another kind of product or service. Using emergy life-cycle analysis researchers have concluded that materials with large refining costs have the greatest potential for high recycle benefits. Moreover, the highest emergy efficiency accrues from systems geared toward material recycling, where materials are engineered to recycle back into their original form and purpose, followed by adaptive reuse systems where the materials are recycled into a different kind of product, and then by-product reuse systems where parts of the products are used to make an entirely different product.[52]

The Energy Information Administration (EIA) states on its website that "a paper mill uses 40 percent less energy to make paper from recycled paper than it does to make paper from fresh lumber."[53] Some critics argue that it takes more energy to produce recycled products than it does to dispose of them in traditional landfill methods, since the curbside collection of recyclables often requires a second waste truck. However, recycling proponents point out that a second timber or logging truck is eliminated when paper is collected for recycling, so the net energy consumption is the same. An Emergy life-cycle analysis on recycling revealed that fly ash, aluminum, recycled concrete aggregate, recycled plastic, and steel yield higher efficiency ratios, whereas the recycling of lumber generates the lowest recycle benefit ratio. Hence, the specific nature of the recycling process, the methods used to analyse the process, and the products involved affect the energy savings budgets.[52]

It is difficult to determine the amount of energy consumed or produced in waste disposal processes in broader ecological terms, where causal relations dissipate into complex networks of material and energy flow. For example, "cities do not follow all the strategies of ecosystem development. Biogeochemical paths become fairly straight relative to wild ecosystems, with very reduced recycling, resulting in large flows of waste and low total energy efficiencies. By contrast, in wild ecosystems, one population’s wastes are another population’s resources, and succession results in efficient exploitation of available resources. However, even modernized cities may still be in the earliest stages of a succession that may take centuries or millennia to complete."[54]:720 How much energy is used in recycling also depends on the type of material being recycled and the process used to do so. Aluminium is generally agreed to use far less energy when recycled rather than being produced from scratch. The EPA states that "recycling aluminum cans, for example, saves 95 percent of the energy required to make the same amount of aluminum from its virgin source, bauxite."[55][56] In 2009 more than half of all aluminium cans produced came from recycled aluminium.

Economist Steven Landsburg has suggested that the sole benefit of reducing landfill space is trumped by the energy needed and resulting pollution from the recycling process.[59] Others, however, have calculated through life cycle assessment that producing recycled paper uses less energy and water than harvesting, pulping, processing, and transporting virgin trees.[60] When less recycled paper is used, additional energy is needed to create and maintain farmed forests until these forests are as self-sustainable as virgin forests.

Other studies have shown that recycling in itself is inefficient to perform the “decoupling” of economic development from the depletion of non-renewable raw materials that is necessary for sustainable development.[61] The international transportation or recycle material flows through "…different trade networks of the three countries result in different flows, decay rates, and potential recycling returns."[62]:1 As global consumption of a natural resources grows, its depletion is inevitable. The best recycling can do is to delay, complete closure of material loops to achieve 100 percent recycling of nonrenewables is impossible as micro-trace materials dissipate into the environment causing severe damage to the planet’s ecosystems.[63][64][65] Historically, this was identified as the metabolic rift by Karl Marx, who identified the unequal exchange rate between energy and nutrients flowing from rural areas to feed urban cities that create effluent wastes degrading the planet’s ecological capital, such as loss in soil nutrient production.[66][67] Energy conservation also leads to what is known as Jevon’s paradox, where improvements in energy efficiency lowers the cost of production and leads to a rebound effect where rates of consumption and economic growth increases.

The amount of money actually saved through recycling depends on the efficiency of the recycling program used to do it. The Institute for Local Self-Reliance argues that the cost of recycling depends on various factors around a community that recycles, such as landfill fees and the amount of disposal that the community recycles. It states that communities start to save money when they treat recycling as a replacement for their traditional waste system rather than an add-on to it and by "redesigning their collection schedules and/or trucks."[69]

In some cases, the cost of recyclable materials also exceeds the cost of raw materials. Virgin plastic resin costs 40 percent less than recycled resin.[70] Additionally, a United States Environmental Protection Agency (EPA) study that tracked the price of clear glass from July 15 to August 2, 1991, found that the average cost per ton ranged from $40 to $60,[71] while a USGS report shows that the cost per ton of raw silica sand from years 1993 to 1997 fell between $17.33 and $18.10.[72]

In a 1996 article for The New York Times, John Tierney argued that it costs more money to recycle the trash of New York City than it does to dispose of it in a landfill. Tierney argued that the recycling process employs people to do the additional waste disposal, sorting, inspecting, and many fees are often charged because the processing costs used to make the end product are often more than the profit from its sale.[73] Tierney also referenced a study conducted by the Solid Waste Association of North America (SWANA) that found in the six communities involved in the study, "all but one of the curbside recycling programs, and all the composting operations and waste-to-energy incinerators, increased the cost of waste disposal."[74]

Tierney also points out that "the prices paid f

Posted by !!! Painting with Light !!! #schauer on 2014-09-18 19:11:53

Tagged: , Schauer Christian , Oberdiendorf , Hauzenberg , Passau , Bayern , Bavaria , Deutschland , Germany , Apple , Apfel , Tractot , Vehicle , Bulldog , Landwirtschaft , Trink , Drink , World , Europe , Wheel , Track , Baum , Tree , Natur , Nature , Landscape , Black and White , Dark , Schwarz , Weiß , Harvest , Ernte , Autumn , Fall , Herbst , Lese , Crape , Fruit , Wine , Wein , Österreich , Bunt , Color , Colorkey , Key , Farm , Bauer , Landwirt , Agrar , Agro , Deutz , John , Fend , Saft , Nuit , Summer , Season , Glas , Bottle , Obst , Vegetable , Health , Clear , Klar , Madow , Outdoor , Nice , Canon , Tamron , EOS , Lightroom , Adobe , Kiste , Box , Android , Pommes

Feathered death

Feathered death

Blogged in The Woodwork: Faking long exposure

Feathered Death
Baker Beach, San Francisco, California

Nikon D3, Nikkor 14-24mm f/2.8G
Aperture 2.0 (raw fine tuning, spot & patch, straighten, white balance, dodge & burn) nik Color Efex Pro (contrast color range, bi-color user defined, bleach bypass, glamour glow) Photoshop (heal)
1/60sec @ f/18, iso200, 14mm (14mm)

____________________________________________________

Visiting Baker Beach.

While returning to the car, I passed near a seagull looked at me guiltily and then flew away. I was curious what it was looking at and noticed that it was a dead bird whose legs had been caught in some cloth flotsam and had been washed ashore.

This photo was taken handheld in aperture mode which was adjusted to have as much depth of field possible and still be well above the shake limit. The 14mm has no trouble focusing close but the dust on the lens left a lot of blemishes that appeared easily after post processing. I’m going to have to look into a good portable cleaning solution as the surface would take forever to clean with a LensPen. I remembered to bring my GPS with me (with batteries) so the location data is accurate (though I forgot to adjust my camera for daylight savings time so I had to shift things over 3600 seconds).

I used dodge and burn to try to reclaim some dynamic range in the overexposed background (burn) while getting some feather detail in shadow (dodge). The spot & patch algorithm was very poor for dust spots in the sand so I had to heal that (as well as lens dust) in Photoshop.

I used contrast color to get better separation between sand and sea, a bi-color to magnify that effect even more and “postcard” the image without messing with the saturation, and then bleach bypass and glow to create the otherworldly look around the dead bird. Most of these filters were not applied to the bird itself using a negative u-point.

I tested the new dodge and burn tool in Aperture 2.0.1 update. It worked very well, but I’m disappointed that it has to generate a TIFF file in order to work. It’d be nice if it used the RAW file and just stored sidecar files that had the masks. The weird thing is if you edit using an external editor and then edit in Photoshop, it loses the version with your dodge and burn edits. In fact, 2.0.1 and 2.0 before it has introduced many, many bugs involving preview generation and versioning. For instance, if you replace the PSD file or edit a PSD file that you’ve already commented, it will reimport the EXIF and IPTC information and smash all your edits in Aperture. Besides the fact that you can no longer use the PSD-replacement trick (to preserve metadata from external creation tools like PTMac and DxO Optics Pro via PSD generation), it destroys all your IPTC work you might have done before round tripping with Photoshop. That is stupid. Another example is preview generation on expanded canvases with a alpha channel that has been colored in are rendered transparent no matter what in the original and then exported as black. So effectively those parts of the image become unusable! (Workaround: save a copy as PSD with alpha unchecked and than overwrite the current PSD) WTF? I mean this stuff worked in Aperture 1.0. Apple has taken the common-sense way of handling versioning and trashed it in order to make room for the API which isn’t really ready yet. They could have done much better if they asked the service to generate previews and gave it the ability to store sidecars. This would be far more versatile than the current stuff which is no better than Photoshop at this point (though the RAW rendering support will be change that for us DxO Optics Pro users). There is no need to actually save the rendered TIFFs—and why TIFF anyway? Those files are huge. Why not store losslessly compressed JPEG2000s are 1/2 the size of TIFFs for photos).

By the way Aperture 2.0 lost support of JPEG2000. (It was buggy in Aperture 1.0). That’s bad because I save my scanner output as high quality JPEG2000’s since they have 48bit dynamic range and yet are about 1/20 the size of a TIFF with almost no noticeable loss in quality. Support all Quicktime-compatible image formats for import! This is why I buy expensive computers, Apple. (Thumbnails should still be JFIF (JPEG) simply because the algorithm for working with JPEG2000’s seems a bit slow even on a fast computer.)

When I do a lot of Photoshop and Aperture 2.0 work, the hard drive starts swapping in a bad way and won’t stop. Very frustrating. What should have been a 15 minute postprocessing ended up wasting 3 hours because of bugs in Aperture and swap.

Finally, I decided not to provide the full resolution versions of the images and added a border around the image (but no watermark). This should still be good enough, if not better, for use under the Creative Commons in websites and blogs, but if you need a print-quality (larger than postcard size) version of the photo, this way you’ll have to contact me for the image. The border design and information is a rip-off of various parts from my favorite photographers: Kevin Kubota, Tony Sweet, Russ Morris, Ryan Brenizer, Jim Goldstein, and Andrei Zmievski.

Click for original photograph (If you cannot view this, add me to your contacts and I’ll add you to my friends. If you are already a contact of mine then just jet me a message and I’ll fix your status.)

Posted by tychay on 2008-04-02 11:47:48

Tagged: , heal , digital glamour glow , Bay Area , white balance adjustment , equipment , descriptive places , camera , nature , Pacific Ocean , places , colors , California , outdoor , Apple Aperture , digital bi-color user defined , dead , San Francisco , Nikkor , 14-24mm f/2.8G , brown , Northern California , digital color contrast range , Nikon D3 , Photoshop , portrait orientation , handheld , post-processing , subjects , nik Color Efex Pro , raw fine tuning adjustment , wildlife , spot & patch adjustment , orientation , dodge & burn edit , sand , animal , shooting traits , straighten adjustment , hiking , blue , Apple Aperture 2.0 , United States , Baker Beach , digital bleach bypass , ocean , water , beach , lens , expired , bird , photo specs , sky