How I Successfuly Organized My Very Own Soy Hot Chocolate Powder | soy hot chocolate powder

How I Successfuly Organized My Very Own Soy Hot Chocolate Powder | soy hot chocolate powder

via WordPress ift.tt/2PkvzSU

Finding the absolute allowance can be tricky. Aback in doubt, accord chocolate. Adolescent or old, everybody loves a aftertaste of the candied stuff. Amber is a abundant allowance for birthdays or holidays. It’s affordable, accessible to wrap, and about affirmed to put a smile one someone’s face. We’ve angled up some abundant amber ability for bodies who adulation to eat, drink, and chef with chocolate. Apprehend on to see our admired allowance account for amber lovers. Some ability are edible, while others are advised to advice you accomplish amber at home, or aloof appearance off your adulation of amber to others. Our adviser includes gourmet chocolate, amber cookbooks, aspect affable accessory for authoritative chocolate, and alike adornment aggressive by chocolate.

Sweet Treats: food, photography, life: Hot Cocoa Mix … – soy hot chocolate powder | soy hot chocolate powder

Want alike added assets for award that absolute gift? Browse acknowledged amber ability on auction here, or analysis out our Ability area to ascertain added Christmas allowance guides.

This alluringly packaged allowance box contains 36 amber biscuits. This array includes Godiva favorites like the Aphotic Truffle Heart, Hazelnut Belgique, Amber Lune, Petite Mousse, Raspberry Amber Premiere, Godiva Signature, and Hazelnut Praline amber biscuit. This would be a abundant allowance for friends, coworkers, authoritative assistants, or admirers of European-style biscuits. They’re additionally abundant for tea drinkers who adore accepting a amber biscuit with their cuppa.

Shopping for addition who prefers to accomplish their own chocolates? Addition air-conditioned allowance to accede would be these nonstick amber molds, acclimated to accomplish amber truffles at home.

Price: $25

Winter is the best time to coil up with a cup of hot chocolate. This 32-ounce hot amber maker is a abundant allowance for the actuality who drinks lots of hot amber aback the acclimate turns cold. This apparatus keeps hot amber hot and frothy, while the easy-pour bung makes it accessible to cascade a additional cup after authoritative a mix. It’s additionally BPA-free, so you can feel safe application it to adapt drinks for the accomplished family. This is a abundant allowance for chocoholics who adulation to entertain. We can absolutely see this apparatus actuality a accoutrement at a New Year’s Eve party, or any winter parties. You could alike add a little booze to the apparatus to accomplish “grown up hot chocolate” for an adults-only party.

Want to accomplish your cup of hot amber alike added special? Aces up some gourmet marshmallows to drag your abutting cup of hot chocolate. We acclaim these boilerplate marshmallows from Lake Champlain Chocolates or the raspberry marshmallows from Three Tarts.

Price: $27.29 (32 percent off MSRP)

Looking for a kid-friendly amber gift? This beautiful DIY kit lets kids accomplish their own bonbon creations. The kit includes molds, a deco pen, stamps and wrappers, acceptance kids to personalize and adapt the attending of their bonbon bars. You will charge to accommodate your own chocolate, fillings, or toppings. You apparently accept some abundant options in your kitchen already, but you may appetite to amalgamation this allowance with some aggregate milk amber chips to get things going.

Adults may additionally acquisition this toy fun. However, if you’re attractive for a added developed allowance for the chocolate-obsessed, accede KitchenAid’s Precise Heat Mixing Bowl. It’s ideal for about-face chocolate, but you could additionally use it to accomplish your own yogurt, affidavit aliment dough, or accumulate your fondue at the absolute temperature.

Price: $12.95 (35 percent off MSRP)

Speaking of fondue, this affair barbecue is absolute for both candied and agreeable fondue parties. For the uninitiated, a raclette barbecue is a appropriate blazon of barbecue that’s acclimated for affectionate banquet parties. It is generally acclimated alongside a fondue pot. Quite accepted in France and Switzerland, this accurate barbecue combines a table top Raclette barbecue with a fondue pot in a distinct appliance. There are 12 mini raclette pans about the edges of the grill, which can authority balmy cheese, vegetables, broiled meats, or seafood. A raclette meal usually consists of cheese that is grilled. Once it begins to soften, the broiled cheese is aching on bread, or drizzled over added items on the table. Added broiled accessories can accommodate beginning or pickled vegetables, convalescent meats, and potatoes. The meal is generally commutual with white wine or tea.

The included fondue hot pot is ideal for either cheese or amber fondue. You could additionally use the barbecue to balmy items for a candied fondue, such as beginning fruits or cubes of brioche. The fondue pot comes with six forks. This is a abundant allowance abstraction for bodies who like to bandy comfortable dinners for abutting friends. If the raclette barbecue is too abundant on its own, accede aloof accepting the fondue pot by itself. You may additionally appetite to aces up a raclette cookbook or a fondue cookbook as well.

Price: $72.99 (51 percent off MSRP)

The Theo Amber aggregation was North America’s aboriginal amoebic and Fair Trade amber factory. This fun cookbook appearance 75 recipes you can accomplish at home application appetizing Theo chocolate. Recipes included in this book accommodate a aphotic amber stout bundt cake, amber bread, mocha cookies, and added candied treats. There are additionally agreeable recipes and breakfast recipes, so you can adore amber all day long.

Sweet Treats: food, photography, life: Hot Cocoa Mix … – soy hot chocolate powder | soy hot chocolate powder

Shopping for addition with no backbone for cooking? You could aloof aces up some Theo Chocolates, instead of the Theo cookbook. We like their appropriate Christmas chocolates, as able-bodied as their bubbler chocolate.

Price: $17.29 (31 percent off MSRP)

Chocolate and booze are two tastes that go abundant together. This amber bar contains aphotic amber that has been alloyed with absolute Irish whiskey. The aforementioned aggregation additionally makes an array of boozy amber truffles. You can additionally browse added chocolates with liquor fillings here.

Looking for added baby allowance ideas? Get aggressive by our account of the best baby ability for Christmas.

Price: $5.88 per bar

This shirt is a abundant allowance abstraction for amber lovers in general, and Hershey admirers in particular. The logo has a brownish sheen, which makes the argument and architecture pop. This is a junior’s style, so if you’re affairs this shirt for an developed woman, you may appetite to adjustment up one size. This shirt is accessible in small, medium, and large. If you’re attractive for a agnate shirt in a beyond ambit of sizes, you could accede this theobromine atom shirt.

Price: $6.99 – $13.43, depending on admeasurement selected

TAZA chocolates are fabricated from amoebic ingredients, and are alarming for baking or authoritative Mexican hot chocolate. This adornment backpack includes aspect flavors like Cinnamon, Vanilla, Guajillo Chili, Salted Almond, Cacao Puro, and Coffee. If you’re arcade for addition who eats amoebic and prizes non-GMO ingredients, this is the best amber allowance for their tastes.

Want to accomplish your allowance added special? Aces up a molinillo, the appropriate bubbles apparatus acclimated to adapt archetypal Mexican-style hot chocolate. The molinillo copse barrel should be captivated amid the award and rotated by abrading your award calm to actualize a frothy, barmy consistency.

Price: $23.30

Oreos. Enrobed in candied milk chocolate. What added can you ask for? Philadelphia Candies has been authoritative candied treats aback 1919. Affection and bloom are ensured with tamper-proof packaging. You can adjustment these Oreos apparent and unadorned, or opt for accolade that accept been decorated. Over 60 altered decorations are available, including chocolate-dipped Oreos with Christmas ornaments, Minions, or snowflakes. If an eight-pack of accolade isn’t enough, you can additionally adjustment packs of 15 or 30 via the articulation below.

Price: $13.95 for a backpack of eight

This is a abundant allowance for anyone who brand aggravating new things, or for British ex-pats attractive for a aftertaste of home. This adornment of British bonbon confined includes one of anniversary of the afterward British favorites: Picnic bar, Flake bar, Crunchie bar, Wispa Bar, Star Bar, Curly Wurly bar, Bifold Decker bar, Twirl bar, and Caramel bar. Some of these confined do accommodate atom or added allergens, so apprehend the labels anxiously afore arresting if you accept any aliment allergies or comestible restrictions.

Shopping for addition who is not a fan of British sweets? This array of Russian and Ukrainian chocolates is a nice alternative.

Sweet Treats: food, photography, life: Hot Cocoa Mix … – soy hot chocolate powder | soy hot chocolate powder

Price: $16.27

Demeter is a aroma aggregation that specializes in offbeat scents. Their calendar includes colognes that aroma like dust, behemothic sequoia tree, and laundromat. But for aphotic amber fans, the Aphotic Amber cologne is absolutely the way to go. There’s additionally a amber dent cookie aroma that may absorption chocoholics. Get one or both, and your admired amber lover will be in heaven.

Price: $30.95 for four ounces

(Madison Valley Soy Candle Company)

This copse wick candle from Madison Valley Soy Candle Aggregation is absolute for bodies who appetite their accomplished abode to aroma like chocolate. The crackling copse wick provides a relaxing, aloof sound. The candles are some of the strongest-smelling on the market, so they can calmly ample a home or accommodation with a abating scent. Anniversary 26 ounce soy candle has a bake time of 160 hours.

Price: $28.99

Chocolat becoming bristles Oscar nominations including Best Picture, but abounding bodies absent seeing the blur aback it was in theaters. This aeon allotment follows Vianne, a amber boutique buyer who transforms a asleep French boondocks with her chocolates and her acceptable personality. This is a abundant cine for anyone who is amorous about amber or French culture. Addition abundant cine for chocoholics and foodies is Like Water For Chocolate.

Price: $7.19 for a multi-format Blu-ray

Okay, this allowance isn’t edible, but it does attending acceptable abundant to eat. This eyeshadow palette from Too Faced appearance an array of chocolate-inspired shades that were formulated application absolute amber powder. This aloof palette is abundant for day or black wear. The company’s “Chocolate Bon Bons” palette is addition winner. Either advantage is abundant for addition who loves chocolate, but may be aggravating to cut aback on sugar.

Price: $49

Looking for an bargain gift? Chocoholics adolescent and old will both acknowledge these stickers. These chocolate-scented, annal affection stickers are acid-free, and printed with vegetable inks. They are abundant for scrapbookers, or for adolescent girls who like decorating their academy folders and anchor with fun stickers. You can browse added air-conditioned stickers from this aggregation here. You can additionally browse added chocolate-scented ability and toys here.

Price: $4.69

Is there annihilation added corrupt than a amber fountain? This three-tier bubbler is a abundant allowance for anyone who loves chocolate. The bubbler holds up to four pounds of broiled chocolate, which is abundant for a abundant party. Your advantageous allowance almsman can use this amber bubbler to enrobe fruits, berries, cookies, or alike bacon in a bandage of buttery chocolate. To accomplish abiding they get the best out of this gift, backpack it with the appropriate affectionate of bubbler chocolate, as able-bodied as bamboo skewers for germ-free aliment dipping.

Shopping for addition who loves chocolate-making and block baking? Browse added comestible ability from Wilton here.

Sweet Treats: food, photography, life: Hot Cocoa Mix … – soy hot chocolate powder | soy hot chocolate powder

Price: $59.99

These beautiful earrings from The Jewel Saga are absolute for a baker, chocoholic, pastry chef, or anyone who loves food. These earrings are fabricated from aerial affection polymer adobe that has been corrective and varnished to accumulate them attractive great. The earrings are french angle earrings fabricated from admirable silver, so they are acceptable for those who crave hypoallergenic jewelry. If this attending is aloof too abundant pink, we additionally acclaim a agnate handmade set of earrings that attending like amber cupcakes. For the added scientifically absent amber fan, we acclaim this handmade Theobromine atom chaplet with analogous earrings.

Price: $25

(Wine Country Allowance Baskets)

A allowance bassinet abounding with amber is the absolute affair for addition who brand amber in all of its forms. This accumulating of six alluringly busy allowance boxes includes the afterward candied treats from Ghirardelli: milk amber with caramel, aphotic amber wafers, milk and aphotic amber covered Bavarian pretzels, aphotic amber with sea alkali and caramel, bifold amber hot cocoa, milk amber hazelnut crisp, “Twilight Delight” aphotic amber and aphotic amber with caramel, amber dent cookies, white mocha coffee booze mix, and a gourmet milk amber bar. We anticipate it’s best to accord all the boxes to one actuality on your anniversary arcade list, but if you bare to stick to a bound budget, you could breach up the boxes amid several altered people.

Looking to absorb a little added money on a added abundant amber allowance basket? We additionally like this “Wonderful World of Chocolate” allowance basket, which has amber articles from a greater array of chocolatiers.

Price: $29.95

An autogenous from the book The True History of Chocolate. (Amazon)

The True History of Amber is the absolute allowance for your chocolate-loving accompany who additionally adulation history. This book was co-authored by Sophie D. Coe, an anthropologist and aliment historian, and Michael D. Coe, Professor Emeritus of Anthropology at Yale University. This is the third copy of the book, which appearance new photographs, chapters, and revisions to reflect the latest aliment scholarship. The book advance the development of cacao and amber articles from their agent in Mexico and Central America, all the way through to the acceleration of all-around amber companies in the avant-garde day. This is a alluring attending at how amber has afflicted over the years, and how our ache for the candied actuality has afflicted history. Addition book in the aforementioned attitude that would accomplish a nice accompaniment allowance is Sweetness and Power: The Place of Amoroso in Avant-garde History.

Price: $18.75 for album (18 percent off MSRP)

Need a absolutely beauteous allowance for the woman who loves the bigger things? It may not be edible, but this amber design arena is absolutely mouth-watering. Advised to be beat on the appropriate duke as a accompaniment to assurance rings or conjugal jewelry, this affected arena appearance 14K “Strawberry” rose gold. The arena boasts a annular amber design in the centermost which weighs aloof beneath a division carat. The bandage is busy with .37 CTW account of amber and “vanilla” diamonds. Not abiding this arena is to her taste? Browse added amber design adornment here. Still haven’t begin that absolute amber gift? Browse added amber ability on auction here.

Price: $1,499

See Also:

How I Successfuly Organized My Very Own Soy Hot Chocolate Powder | soy hot chocolate powder – soy hot chocolate powder
| Allowed to be able to the website, with this moment I am going to show you with regards to keyword. And now, this can be the very first image:

Homemade Vegan Hot Cocoa Mix – flora foodie – soy hot chocolate powder | soy hot chocolate powder

How about picture preceding? is actually which wonderful???. if you think so, I’l d teach you some picture once more underneath:

So, if you’d like to receive all of these incredible graphics related to (How I Successfuly Organized My Very Own Soy Hot Chocolate Powder | soy hot chocolate powder), press save link to save the graphics for your personal pc. There’re all set for save, if you love and wish to own it, simply click save symbol in the page, and it’ll be immediately saved in your home computer.} Lastly if you would like get new and recent image related to (How I Successfuly Organized My Very Own Soy Hot Chocolate Powder | soy hot chocolate powder), please follow us on google plus or save this blog, we try our best to give you regular up grade with all new and fresh pictures. We do hope you like keeping here. For most up-dates and latest information about (How I Successfuly Organized My Very Own Soy Hot Chocolate Powder | soy hot chocolate powder) pics, please kindly follow us on twitter, path, Instagram and google plus, or you mark this page on book mark section, We attempt to present you up grade regularly with all new and fresh pictures, like your surfing, and find the ideal for you.

Here you are at our website, contentabove (How I Successfuly Organized My Very Own Soy Hot Chocolate Powder | soy hot chocolate powder) published . Nowadays we’re pleased to declare we have found an extremelyinteresting nicheto be discussed, that is (How I Successfuly Organized My Very Own Soy Hot Chocolate Powder | soy hot chocolate powder) Some people trying to find details about(How I Successfuly Organized My Very Own Soy Hot Chocolate Powder | soy hot chocolate powder) and definitely one of these is you, is not it?

‘Creamy’ Almond Milk Hot Chocolate + IBS-Friendly Tips … – soy hot chocolate powder | soy hot chocolate powder

Homemade Vegan Hot Cocoa Mix – flora foodie – soy hot chocolate powder | soy hot chocolate powder

Tasteful – soy hot chocolate powder | soy hot chocolate powder

Homemade Vegan Hot Cocoa Mix – flora foodie – soy hot chocolate powder | soy hot chocolate powder

‘Creamy’ Almond Milk Hot Chocolate + IBS-Friendly Tips … – soy hot chocolate powder | soy hot chocolate powder

Vegan Hot Cocoa Recipe, Spiked or Not – soy hot chocolate powder | soy hot chocolate powder

Homemade Vegan Hot Cocoa Mix – flora foodie – soy hot chocolate powder | soy hot chocolate powder

Tasteful – soy hot chocolate powder | soy hot chocolate powder

Vegan Hot Cocoa Recipe, Spiked or Not – soy hot chocolate powder | soy hot chocolate powder

‘Creamy’ Almond Milk Hot Chocolate + IBS-Friendly Tips … – soy hot chocolate powder | soy hot chocolate powder

Thanksgiving Dinner 2014 – Maple Glazed Brussels Sprouts with Pancetta – soy hot chocolate powder | soy hot chocolate powder

Tasteful – soy hot chocolate powder | soy hot chocolate powder

Sweet Treats: food, photography, life: Hot Cocoa Mix … – soy hot chocolate powder | soy hot chocolate powder

Thanksgiving Dinner 2014 – Maple Glazed Brussels Sprouts with Pancetta – soy hot chocolate powder | soy hot chocolate powder

Vegan Hot Cocoa Recipe, Spiked or Not – soy hot chocolate powder | soy hot chocolate powder

Sweet Treats: food, photography, life: Hot Cocoa Mix … – soy hot chocolate powder | soy hot chocolate powder

Five Things You Most Likely Didn’t Know About Chocolatier Online Free No Download | chocolatier online free no download – soy hot chocolate powder | soy hot chocolate powder

Thanksgiving Dinner 2014 – Maple Glazed Brussels Sprouts with Pancetta – soy hot chocolate powder | soy hot chocolate powder

Five Things You Most Likely Didn’t Know About Chocolatier Online Free No Download | chocolatier online free no download – soy hot chocolate powder | soy hot chocolate powder

Thanksgiving Dinner 2014 – Maple Glazed Brussels Sprouts with Pancetta – soy hot chocolate powder | soy hot chocolate powder

Thanksgiving Dinner 2014 – soy hot chocolate powder | soy hot chocolate powder

The post How I Successfuly Organized My Very Own Soy Hot Chocolate Powder | soy hot chocolate powder appeared first on Chocolate Health.

Posted by richardson_shawna on 2018-12-06 16:50:25

Tagged: , hot , chocolate , recipe , cocoa , powder , soy , milk

Ten Things That You Never Expect On Hot Chocolate With Cocoa Powder And Almond Milk | hot chocolate with cocoa powder and almond milk

Ten Things That You Never Expect On Hot Chocolate With Cocoa Powder And Almond Milk | hot chocolate with cocoa powder and almond milk

via WordPress ift.tt/2QzpAhQ

Now that the blithe winter canicule accept accustomed as fast as a belly-whopping Frosty the Snowman, annihilation tastes merrier than a bootleg anniversary cookie. These Cocoa-Peppermint Buttons — a compound acclimatized from “Good Housekeeping Kids Bake!” — are blithe good. Aloof don’t eat them all at already . . . or your abdomen may resemble that of a assertive white-bearded fella.

Coconut Milk Hot Chocolate + Wool and Whiskey Scarf Giveaway … – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Adult’s help: Some

Hands-on time: An hour

Total time: 2 hours

Makes: About 25-30 cookies

KITCHEN SUPPLIES

● ample bond bowl

● barometer cups

● barometer spoons

● whisk

● baby bowl

● mixer with collapsed beater and bond bowl

● microwave-safe bowl

42-Calorie Almond Milk Hot Chocolate – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

● elastic spatula

● artificial wrap

● acid board

● rolling pin

● block paper

● 2 baking sheets

● 2 wire racks

● spatula

INGREDIENTS

1¼ cups advantageous flour, additional added for dusting

¼ cup absinthian cocoa

⅓ teaspoon baking powder

hot chocolate | Dandelion Chocolate – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

¼ teaspoon salt

1 ample egg

½ cup (1 stick) of absolute butter, softened

½ cup sugar

2 tablespoons semisweet amber chips

1 teaspoon boilerplate extract

½ teaspoon almond extract

About 30 starlight mints, unwrapped

STEPS

1. Mix the flour, cocoa, baking crumb and alkali in a ample basin with a whisk. Crack the egg into a baby bowl, again exhausted it with a barrel until the aqueous is yellow.

2. Put the adulate and amoroso in a mixer’s ample bowl, and exhausted on medium-high acceleration until smooth. Turn off the mixer. Melt the amber chips in microwave-safe basin in bake for 30 seconds. Stir with kitchen teaspoon, set abreast to air-conditioned slightly.

3. Pour bisected of the egg aqueous into basin with sugar-butter mixture, again add the amber and -extracts. Resume assault on -medium-high acceleration for 30 seconds, stop to scrape the basin abandon with a elastic spatula, again exhausted addition 30 seconds.

hot chocolate | Dandelion Chocolate – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

4. Reduce the acceleration to low; gradually exhausted in the abrade admixture aloof until attenuated (about 1½ minutes).

5. Abolish the chef from the bowl, again bisect into two according pieces with a table knife; abrade anniversary into a disk. Blanket anniversary deeply in artificial blanket and air-condition for 30 minutes, or until chef is close but not hard.

6. Preheat the oven to 375 degrees. Dust a acid lath with some flour, again cycle out one chef deejay with a flour-coated rolling pin until the chef is ⅛ -inch thick. Pull off baby chunks of dough, rolling anniversary amid your award into 1-inch balls.

7. Place the assurance 3 inches afar on a -parchment-lined cookie sheet. Pat to abrade until accolade are 1½ inches wide. Put the cookie area in the oven on the centermost rack. Bake 10 minutes. While the aboriginal accumulation bakes, adapt the additional accumulation as you did in Steps 6 and 7.

8. Put on oven mitts and abolish accolade from the oven; anon columnist a excellent into the centermost of each. (The accolade will be hot, so you may charge an adult’s help.) Columnist acclaim to abstain arise the cookies.

9. Lift the accolade from the area with a spatula, agreement them on wire racks to cool, for 5 minutes. Bake additional accumulation and again echo Steps 8 and 9.

10. Already the accolade cool, allotment anon or abundance in an closed alembic for up to 10 days.

More anniversary recipes and crafts in KidsPost

Stained bottle makes bright anniversary cookie

These angel accolade can’t advice actuality good

Make a biting arena with these snow globes

Claim a atom on the Christmas timberline with a made-by-you ornament

Simple Vegan Hot Chocolate | minimalist baker recipes – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Ten Things That You Never Expect On Hot Chocolate With Cocoa Powder And Almond Milk | hot chocolate with cocoa powder and almond milk – hot chocolate with cocoa powder and almond milk
| Pleasant to the website, in this particular occasion I will explain to you concerning keyword. Now, this can be a initial photograph:

hot chocolate | Dandelion Chocolate – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

What about impression preceding? will be that will remarkable???. if you think maybe consequently, I’l t explain to you a few graphic again down below:

So, if you desire to secure the wonderful shots related to (Ten Things That You Never Expect On Hot Chocolate With Cocoa Powder And Almond Milk | hot chocolate with cocoa powder and almond milk), click on save button to save these shots in your computer. These are prepared for obtain, if you like and want to own it, click save logo on the article, and it will be instantly saved to your desktop computer.} As a final point if you want to obtain new and the recent photo related with (Ten Things That You Never Expect On Hot Chocolate With Cocoa Powder And Almond Milk | hot chocolate with cocoa powder and almond milk), please follow us on google plus or bookmark this page, we try our best to present you daily up-date with all new and fresh pictures. We do hope you like keeping here. For some upgrades and recent news about (Ten Things That You Never Expect On Hot Chocolate With Cocoa Powder And Almond Milk | hot chocolate with cocoa powder and almond milk) graphics, please kindly follow us on tweets, path, Instagram and google plus, or you mark this page on bookmark section, We attempt to offer you up grade regularly with fresh and new shots, like your browsing, and find the right for you.

Here you are at our site, articleabove (Ten Things That You Never Expect On Hot Chocolate With Cocoa Powder And Almond Milk | hot chocolate with cocoa powder and almond milk) published . At this time we are pleased to declare that we have found an awfullyinteresting contentto be discussed, that is (Ten Things That You Never Expect On Hot Chocolate With Cocoa Powder And Almond Milk | hot chocolate with cocoa powder and almond milk) Lots of people attempting to find specifics of(Ten Things That You Never Expect On Hot Chocolate With Cocoa Powder And Almond Milk | hot chocolate with cocoa powder and almond milk) and certainly one of these is you, is not it?

30-Calorie Almond Milk Hot Chocolate – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Simple Vegan Hot Chocolate | minimalist baker recipes – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Food – Chelsea Crockett – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

30-Calorie Almond Milk Hot Chocolate – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

30-Calorie Almond Milk Hot Chocolate – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

30-Calorie Almond Milk Hot Chocolate – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Food – Chelsea Crockett – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Healthy Chocolate Pudding – NO Avocado, NO Tofu! – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

30-Calorie Almond Milk Hot Chocolate – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Healthy Chocolate Pudding – NO Avocado, NO Tofu! – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

30-Calorie Almond Milk Hot Chocolate – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Healthy Homemade Sugar Free Hot Chocolate Mix – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Healthy Chocolate Pudding – NO Avocado, NO Tofu! – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Healthy Chocolate Pudding – NO Avocado, NO Tofu! – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Vegan Chocolate Milk with Cocoa Powder – YouTube – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Healthy Chocolate Pudding – NO Avocado, NO Tofu! – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Healthy Homemade Sugar Free Hot Chocolate Mix – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Almond Milk Hot Chocolate – TODAY.com – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Healthy Homemade Sugar Free Hot Chocolate Mix – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Vegan Chocolate Milk with Cocoa Powder – YouTube – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Vegan Chocolate Milk with Cocoa Powder – YouTube – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Almond Milk Hot Chocolate – TODAY.com – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Vegan Chocolate Milk with Cocoa Powder – YouTube – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

Almond Joy Hot Chocolate – hot chocolate with cocoa powder and almond milk | hot chocolate with cocoa powder and almond milk

The post Ten Things That You Never Expect On Hot Chocolate With Cocoa Powder And Almond Milk | hot chocolate with cocoa powder and almond milk appeared first on Chocolate Health.

Posted by richardson_shawna on 2018-12-06 05:50:19

Tagged: , hot , chocolate , recipe , with , cocoa , powder , almond , milk

History of Breast Milk substitute and How they came about

History of Breast Milk substitute and How they came about

Throughout history, every generation has needed to develop an alternative to breastfeeding, either because a mother had insufficient milk or chose not to breast feed. Scientific and historical literature tells us of centuries-old efforts to satisfy an infant’s nutritional needs and to replicate the composition and benefits of breast milk.

 

In prehistoric cultures, infant mortality was high. Like other mammals, only the hardest of infant, nursed by their mothers, survived. In ancient cultures, the first doctors encouraged breast feeding. If for some reason, the mother could not nurse, wet-nursing- substituting lactating adult women for the birth mother- was recommended for those who could afford it. Ancient art shows us that those who could not afford a wet nurse relied on the milk of domestic animals, such as donkeys, camel and goats. Clay feeding vessels, designed to transfer the milk from the animal to the baby, have been found in ancient tombs and ruins. Historians of spartan times reported that succession to the throne was interrupted and given to a younger son because he was breastfed by his mother and his older brother was wet-nursed.

 

Little about infant feeding was documented between ancient times and the Renaissance. During the Middle Ages, wet nursing was the choice for a mother who could not nurse. One pediatric article on breast feeding describes the characteristics of a good wet nurse as well as information on hiccups, diarrhea and vomiting. In the late 1500s, scientists detailed the therapeutic values of human milk not only for infants, but also for aging men and women, They also recommended the use of ass’ milk as a breast- milk substitute, should a mother need it. If the baby could not be nursed, liquid food made of diluted honey mixed with cereal flour or breadcrumbs was poured through a hollow cow’s horn. However, most efforts to replace breast feeding were unsuccessful because of the infant’s intolerance or to bacterial contamination.

 

In eighteenth century Europe, unsanitary conditions were the greatest hazard for mothers or the improper preparation of breast milk alternatives was common. Documents from that time indicate that wealthy English women chose not to nurse their infants because they thought breast-feeding aged them and ruined their figures. And, even though breast feeding had been identified as a form of birth control, wealthy women preferred to bottle or hand feed, often having 12 to 20 babies instead.

 

In France, during the time of Louise the XVI and Napoleon, breast feeding- especially by the wealthy- was regarded as bourgeois and simply not done. Wet nursing, as well as animal milk and pap feeding, were the norm. French founding homes staffed by wet nurses, which carefully regulated their diets and their activities, ensured that infants received proper nutrition.

 

In the 1800s, breast feeding again became popular. For those who required an alternative, babies were fed goat or donkey milk, but this had its own drawbacks- high protein and few of the essential trace elements, plus the risk of infection from contamination. Cow’s milk- treated with additives (fat, sugar, lime water and cream) to make it more digestible and then diluted- became a common, low cost alternative. Though often used, it was not recommended because it was low protein, although thanks to the work of Louise Pasteur and Robert Koch, who discovered how to eliminate pathogenic bacteria, contamination was no longer an issue.

 

Urbanization and technological advances made breast-feeding less popular during the 20th century. The extended family became less of a support, and as women left the home and entered the workplace in record numbers, they tended to see breast feeding as an unnecessary burden. During the first half of the 20th century, scientists and physicians began in earnest to elucidate in detail the composition of mother’s milk and looking for ways of imitating it in such a way that substitutes would match more or less its digestibility and nutrient content. Success was rather slow at the beginning, however. But thanks to technological progress most manufacturers marketed bacteriologically safe and nutritionally acceptable infant foods in a powdered form already before the second world war.

 

The most significant breakthrough in artificial feeding of infants have happened in the second half of the 20th century. American, Swiss and Japanese food technologists, together with pediatricians and chemists, succeeded in matching the essential nutrients of mother’s milk in formula, making it usable from the first day of a baby’s life. Improvements in the composition of infant formula, along with better sanitary conditions and standards of living helped to decrease mortality of infants who were not breastfed from around 80% to less than 2%

 

I am Funom Theophilus Makama. I advertise through writing. As a platinum expert Author, I write lots of articles and hence promote interested websites, companies, groups, organizations, and communities through publishing and distributing my articles. For more information on this interesting venture, click on the link below

http://funom-makama.blogspot.com/2010/07/advertising-contracts.html

 

I am an expert Author and writer. I write, publish, re-publish and distribute very good articles around the internet. With professional techniques, such as SEO, social bookmarking, social netowrking, Google ads and more, I am able to generate traffic thereby aiding me to advertise products, companies, websites, groups, communities etc. Hence I advertise through writing and distribution of articles

Milkyway Oberdiendorf

Milkyway Oberdiendorf

Quelle:
de.wikipedia.org/wiki/Milchstra%C3%9Fe

en.wikipedia.org/wiki/Milky_Way

Die Milchstraße, auch Galaxis, ist die Galaxie, in der sich unser Sonnensystem mit der Erde befindet. Entsprechend ihrer Form als flache Scheibe, die aus Milliarden von Sternen besteht, ist die Milchstraße von der Erde aus als bandförmige Aufhellung am Nachthimmel sichtbar, die sich über 360° erstreckt. Ihrer Struktur nach zählt die Milchstraße zu den Balkenspiralgalaxien.
Den Namen Milchstraßensystem trägt unser Sternsystem nach der Milchstraße, die als freiäugige Innenansicht des Systems von der Erde aus wie ein quer über das Firmament gesetzter milchiger Pinselstrich erscheint. Dass dieses weißliche Band sich in Wirklichkeit aus unzähligen einzelnen Sternen zusammensetzt, wurde erst 1609 von Galileo Galilei erkannt, der die Erscheinung als Erster durch ein Fernrohr betrachtete. Es sind nach heutiger Schätzung ca. 100 bis 300 Milliarden Sterne.

Schon im Altertum war die Milchstraße als heller, schmaler Streifen am Nachthimmel bekannt. Ihr altgriechischer Name galaxias (γαλαξίας) – von dem auch der heutige Fachausdruck „Galaxis“ stammt – ist von dem Wort gala (γάλα, Milch) abgeleitet.[1] Wie dem deutschen Wort „Milchstraße“ liegt also auch dem altgriechischen Begriff das „milchige“ Aussehen zugrunde.

Eine antike griechische Sage versucht, diesen Begriff mythologisch zu erklären: Danach habe Zeus seinen Sohn Herakles, den ihm die sterbliche Frau Alkmene geschenkt hatte, an der Brust seiner göttlichen Frau Hera trinken lassen, als diese schlief. Herakles sollte auf diese Weise göttliche Kräfte erhalten. Aber er saugte so ungestüm, dass Hera erwachte und den ihr fremden Säugling zurückstieß; dabei wurde ein Strahl ihrer Milch über den ganzen Himmel verspritzt.

Einer germanischen Sage zufolge erhielt die Milchstraße nach dem Gott des Lichtes, Heimdall, auch Iring genannt, den Namen Iringsstraße (laut Felix Dahn, Walhall – germanische Götter- und Heldensagen). Die afrikanischen San gaben der Milchstraße den Namen „Rückgrat der Nacht“.

Zur ersten Vorstellung der Scheibenform des Milchstraßensystems gelangte bereits Wilhelm Herschel im Jahr 1785 aufgrund systematischer Sternzählungen (Stellarstatistik). Diese Methode konnte aber nicht zu einem realistischen Bild führen, da das Licht weiter entfernter Sterne stark durch interstellare Staubwolken abgeschwächt wird, ein Effekt, dessen wahre Bedeutung erst in der ersten Hälfte des 20. Jahrhunderts vollständig erfasst wurde. Durch Untersuchungen zur Verteilung der Kugelsternhaufen im Raum gelangte Harlow Shapley 1919 zu realistischen Abschätzungen der Größe des Milchstraßensystems und zu der Erkenntnis, dass die Sonne nicht – wie bis dahin, z. B. von Jacobus Kapteyn, angenommen – im Zentrum der Galaxis sitzt, sondern eher an deren Rand. Edwin Hubbles Messungen der Entfernungen von Spiralnebeln zeigten, dass diese außerhalb des Milchstraßensystems liegen und tatsächlich wie dieses eigenständige Galaxien sind.
Das Band der Milchstraße erstreckt sich als unregelmäßig breiter, schwach milchig-heller Streifen über dem Firmament.[2] Seine Erscheinung rührt daher, dass in ihm mit bloßem Auge keine Einzelsterne wahrgenommen werden, sondern eine Vielzahl lichtschwacher Sterne der galaktischen Scheibe und des Bulges (in Richtung des galaktischen Zentrums). Von der Südhalbkugel aus steht das helle Zentrum der Milchstraße hoch am Himmel, während man von der Nordhalbkugel zum Rand hin blickt. Daher kann man das Band der Milchstraße am besten von der Südhalbkugel aus beobachten. Im Dezember und Januar kann der hellste Bereich der Milchstraße nicht oder nur sehr schlecht beobachtet werden, weil sich die Sonne zwischen dem Zentrum der Galaxis und der Erde befindet. Gute Beobachtungsbedingungen sind bei klarer Luft und bei nur geringer Lichtverschmutzung durch künstliche Lichtquellen gegeben. Alle der maximal 6000 mit bloßem Auge sichtbaren Sterne des Nachthimmels gehören zum Milchstraßensystem.

Das Milchstraßenband verläuft unter anderem durch die Sternbilder Schütze (in dieser Richtung liegt auch das galaktische Zentrum), Adler, Schwan, Kassiopeia, Perseus, Fuhrmann, Zwillinge, Orion, Kiel des Schiffs, Zentaur, Kreuz des Südens und Skorpion. Die mittlere Ebene des Milchstraßensystems ist gegenüber dem Himmelsäquator um einen Winkel von etwa 63° gekippt.

Astronomen verwenden gelegentlich ein spezielles, an die Geometrie des Milchstraßensystems angepasstes galaktisches Koordinatensystem, bestehend aus Länge l und Breite b. Die galaktische Breite beträgt 0° in der Ebene des Milchstraßensystems, +90° am galaktischen Nordpol und −90° am galaktischen Südpol. Die galaktische Länge, die ebenfalls in Grad angegeben wird, hat ihren Ursprung (l = 0°) in Richtung des galaktischen Zentrums und nimmt nach Osten hin zu.

Die Erforschung der Struktur des Milchstraßensystems ist schwieriger als die der Strukturen anderer Galaxien, da Beobachtungen nur von einem Punkt innerhalb der Scheibe gemacht werden können. Wegen der erwähnten Absorption sichtbaren Lichts durch interstellaren Staub ist es nicht möglich, durch visuelle Beobachtungen ein vollständiges Bild des Milchstraßensystems zu erhalten. Große Fortschritte wurden erst gemacht, als Beobachtungen in anderen Wellenlängenbereichen, insbesondere im Radiofrequenzbereich und im Infraroten möglich wurden. Dennoch sind viele Details des Aufbaus der Galaxis noch nicht bekannt.

Das Milchstraßensystem wurde früher als vier- oder fünfarmig betrachtet, nun gilt es als zweiarmige Balkenspiralgalaxie.[3] Es besteht aus etwa 100 bis 300 Milliarden Sternen und großen Mengen interstellarer Materie, die nochmals 600 Millionen bis einige Milliarden Sonnenmassen ausmacht (die Anzahl der Sterne und damit auch die Gesamtmasse unserer Galaxis kann auf Basis von Berechnungen und Beobachtungen nur geschätzt werden, woraus sich der große Toleranzbereich der Zahlen ergibt). Die Masse dieses inneren Bereichs der Galaxis wird mit ungefähr 180 Milliarden Sonnenmassen veranschlagt. Ihre Ausdehnung in der galaktischen Ebene beträgt etwa 100.000 Lichtjahre (30 kpc), die Dicke der Scheibe etwa 3000 Lichtjahre (920 pc) und die der zentralen Ausbauchung (engl. Bulge) etwa 16.000 Lichtjahre (5 kpc). Zum Vergleich: Der Andromedanebel hat eine Ausdehnung von etwa 150.000 Lj. und das drittgrößte Mitglied der lokalen Gruppe, der Dreiecksnebel M 33, ca. 50.000 Lj. Die Angaben der Dicke müssen aber eventuell noch bis zum Doppelten nach oben korrigiert werden, wie der australische Wissenschaftler Bryan Gaensler und sein Team im Januar 2008 äußerten.[4][5] Aus der Bewegung interstellaren Gases und der Sternverteilung im Bulge ergibt sich für diesen eine längliche Form. Dieser Balken bildet mit der Verbindungslinie des Sonnensystems zum Zentrum des Milchstraßensystems einen Winkel von 45°. Die Galaxis ist also vermutlich eine Balkenspiralgalaxie vom Hubble-Typ SBc. Gemäß einer Bestimmung mithilfe des Infrarot-Weltraumteleskops Spitzer ist die Balkenstruktur mit einer Ausdehnung von 27.000 Lichtjahren überraschend lang.

Basierend auf der bekannten Umlaufzeit der Sonne und ihrem Abstand vom galaktischen Zentrum kann nach dem dritten keplerschen Gesetz zumindest die Gesamtmasse berechnet werden, die sich innerhalb der Sonnenbahn befindet.[6] Die Gesamtmasse des Milchstraßensystems wird auf etwa 400 Milliarden Sonnenmassen geschätzt,[7][8] damit ist sie neben dem Andromedanebel (800 Milliarden Sonnenmassen) die massereichste Galaxie der Lokalen Gruppe.

Galaktischer Halo
Umgeben ist die Galaxis vom kugelförmigen galaktischen Halo mit einem Durchmesser von etwa 165.000 Lichtjahren (50 kpc), einer Art von galaktischer „Atmosphäre“. In ihm befinden sich neben den etwa 150 bekannten Kugelsternhaufen nur weitere alte Sterne, darunter RR Lyrae-Veränderliche, und Gas sehr geringer Dichte. Ausnahme sind die heißen Blue-Straggler-Sterne. Dazu kommen große Mengen Dunkle Materie mit etwa 1 Billion Sonnenmassen, darunter auch so genannte MACHOs. Anders als die galaktische Scheibe ist der Halo weitgehend staubfrei und enthält fast ausschließlich Sterne der älteren, metallarmen Population II, deren Orbit sehr stark gegen die galaktische Ebene geneigt ist. Das Alter des inneren Teils des Halo wurde in einer im Mai 2012 vorgestellten neuen Methode zur Altersbestimmung vom Space Telescope Science Institute in Baltimore mit 11,4 Milliarden Jahren (mit einer Unsicherheit von 0,7 Milliarden Jahren) angegeben. Dem Astronomen Jason Kalirai vom Space Telescope Science Institute gelang diese Altersbestimmung durch den Vergleich der Halo-Zwerge der Milchstraße mit den gut untersuchten Zwergen im Kugelsternhaufen Messier 4, die im Sternbild Skorpion liegen.[9]

Galaktische Scheibe
Der Großteil der Sterne innerhalb der Galaxis ist annähernd gleichmäßig auf die galaktische Scheibe verteilt. Sie enthält im Gegensatz zum Halo vor allem Sterne der Population I, welche sich durch einen hohen Anteil schwerer Elemente auszeichnen.

Spiralarme
Teil der Scheibe sind auch die für das Milchstraßensystem charakteristischen Spiralarme. In den Spiralarmen befinden sich enorme Ansammlungen von Wasserstoff und auch die größten HII-Regionen, die Sternentstehungsgebiete der Galaxis. Daher befinden sich dort auch viele Protosterne, junge Sterne des T-Tauri-Typs und Herbig-Haro-Objekte. Während ihrer Lebenszeit bewegen sich Sterne von ihren Geburtsstätten weg und verteilen sich auf die Scheibe. Besonders massereiche und leuchtkräftige Sterne entfernen sich allerdings aufgrund ihrer kürzeren Lebensdauer nicht so weit von den Spiralarmen, weswegen diese hervortreten. Daher gehören zu den dort befindlichen stellaren Objekten vor allem Sterne der Spektralklassen O und B, Überriesen und Cepheiden, alle jünger als 100 Millionen Jahre. Sie stellen jedoch nur etwa ein Prozent der Sterne im Milchstraßensystem. Der größte Teil der Masse der Galaxis besteht aus alten, massearmen Sternen. Der „Zwischenraum“ zwischen den Spiralarmen ist also nicht leer, sondern ist einfach nur weniger leuchtstark.
Die Spiralstruktur der Galaxis konnte durch die Beobachtung der Verteilung von neutralem Wasserstoff bestätigt werden. Die entdeckten Spiralarme wurden nach den in ihrer Richtung liegenden Sternbildern benannt.

Die Zeichnung rechts stellt den Aufbau des Milchstraßensystems schematisch dar. Das Zentrum ist im sichtbaren Licht nicht direkt beobachtbar, ebenso wie der hinter ihm liegende Bereich. Die Sonne (gelber Kreis) liegt zwischen den Spiralarmen Sagittarius (nach Sternbild Schütze) und Perseus im Orionarm. Vermutlich ist dieser Arm nicht vollständig, siehe braune Linie in der Abbildung. Im Verhältnis zu dieser unmittelbaren Umgebung bewegt sich die Sonne mit etwa 30 km/s in Richtung des Sternbildes Herkules. Der innerste Arm ist der Norma-Arm (nach Sternbild Winkelmaß, auch 3-kpc-Arm), der äußerste (nicht in der Abbildung) ist der Cygnus-Arm (nach Sternbild Schwan), welcher vermutlich die Fortsetzung des Scutum-Crux-Arms (nach Sternbildern Schild und Kreuz des Südens) ist .

Wissenschaftler der Universität von Wisconsin veröffentlichten im Juni 2008 Auswertungen von Infrarotaufnahmen des Spitzer-Teleskopes, die das Milchstraßensystem nun als zweiarmige Galaxie darstellen. Sagittarius und Norma sind in dieser Darstellung nur noch als dünne Nebenarme erkenntlich, da diese nur durch eine überschüssige Verteilung von Gas gekennzeichnet sind während die restlichen beiden Arme durch eine hohe Dichte alter rötlicher Sterne gekennzeichnet sind.[10] Eine jüngere Untersuchung der Verteilung von Sternentstehungsgebieten und junger Sterne scheint hingegen die bekannte vierarmige Struktur der Milchstraße zu bestätigen.[11] Die Milchstraße besteht daher scheinbar aus vier Spiralarmen die sich primär durch Gaswolken und junge Sterne abzeichnen, wobei zwei Arme zusätzlich durch eine hohe Konzentration älterer Sterne charakterisiert sind. Neben diesen unterschiedlichen Auffassungen bezüglich der Struktur der Galaxis sollte beachtet werden, dass ein klar definiertes logarithmisches Spiralmuster nur in seltenen Fällen bei anderen Spiralgalaxien über die Gesamtheit der Scheibe beobachtet werden kann und die vorhandenen Arme oft extreme Abzweigungen, Verästelungen und Verschränkungen aufweisen.[12][13] Die wahrscheinliche Natur des lokalen Arms als solche Unregelmäßigkeit ist ein Hinweis darauf, dass solche Strukturen in der Milchstraße häufig auftreten könnten.[14]

Welche Prozesse für die Entstehung der Spiralstruktur verantwortlich sind, ist bislang noch nicht eindeutig geklärt. Jedoch ist klar, dass die zu den Spiralarmen gehörigen Sterne keine starre Struktur sind, die sich in Formation um das galaktische Zentrum dreht. Wäre dies der Fall, würde sich die Spiralstruktur des Milchstraßensystems und anderer Spiralgalaxien aufgrund der unterschiedlichen Bahngeschwindigkeiten innerhalb relativ kurzer Zeit aufwickeln und unkenntlich werden. Eine Erklärung bietet die Dichtewellentheorie, nach der die Spiralarme Zonen erhöhter Materiedichte und Sternentstehung sind, die sich unabhängig von den Sternen durch die Scheibe bewegen. Die durch die Spiralarme verursachten Störungen in den Bahnen der Sterne können zu Lindblad-Resonanzen führen.

Sterne der galaktischen Scheibe
Die zur Population I zählenden Sterne der galaktischen Scheibe lassen sich mit zunehmender Streuung um die Hauptebene und Alter in drei Unterpopulationen einteilen. Die so genannte „Thin Disk“ in einem Bereich von 700 bis 800 Lichtjahren über und unterhalb der galaktischen Ebene enthält neben den oben genannten leuchtkräftigen Sternen der Spiralarme, die sich nur maximal 500 Lichtjahre von der Ebene entfernen, Sterne der Spektralklassen A und F, einige Riesen der Klassen A, F, G und K, sowie Zwergsterne der Klassen G, K und M und auch einige Weiße Zwerge. Die Metallizität dieser Sterne ist vergleichbar mit der der Sonne, meist aber auch doppelt so hoch, ihr Alter liegt bei etwa einer Milliarde Jahren.

Eine weitere Gruppe ist die der mittelalten Sterne (Alter bis zu fünf Milliarden Jahre). Dazu zählen die Sonne und weitere Zwergsterne der Spektraltypen G, K und M, sowie einige Unter- und Rote Riesen. Der Metallgehalt ist hier deutlich geringer mit nur etwa 50 bis 100 Prozent dessen der Sonne. Auch ist die Bahnexzentrizität der galaktischen Orbits dieser Sterne höher und sie befinden sich nicht weiter als 1500 Lichtjahre über oder unterhalb der galaktischen Ebene.

Zwischen maximal 2500 Lichtjahren ober- und unterhalb der Hauptebene erstreckt sich die „Thick Disk“. Dort befinden sich rote K- und M-Zwerge, Weiße Zwerge, sowie einige Unterriesen und Rote Riesen, aber auch langperiodische Veränderliche. Ihr Alter erreicht bis zu zehn Milliarden Jahre und sie sind vergleichsweise metallarm (etwa ein Viertel der Sonnenmetallizität). Diese Population ähnelt auch vielen Sternen im Bulge.

Die galaktische Scheibe ist nicht vollkommen gerade, durch gravitative Wechselwirkung mit den Magellanschen Wolken ist sie leicht in deren Richtung gebogen.

Das Zentrum des Milchstraßensystems liegt im Sternbild Schütze und ist hinter dunklen Staub- und Gaswolken verborgen, so dass es im sichtbaren Licht nicht direkt beobachtet werden kann. Beginnend in den 1950er Jahren ist es gelungen, im Radiowellenbereich sowie mit Infrarotstrahlung und Röntgenstrahlung zunehmend detailreichere Bilder aus der nahen Umgebung des galaktischen Zentrums zu gewinnen. Man hat dort eine starke Radioquelle entdeckt, bezeichnet als Sagittarius A* (Sgr A*), die aus einem sehr kleinen Gebiet strahlt. Diese Massenkonzentration wird von einer Gruppe von Sternen in einem Radius von weniger als einem halben Lichtjahr mit einer Umlaufzeit von etwa 100 Jahren sowie einem Schwarzen Loch mit 1300 Sonnenmassen in drei Lichtjahren Entfernung umkreist. Der dem zentralen Schwarzen Loch am nächsten liegende Stern S2 umläuft das galaktische Zentrum in einer Entfernung von etwa 17 Lichtstunden in einem Zeitraum von nur 15,2 Jahren. Seine Bahn konnte inzwischen über einen vollen Umlauf hinweg beobachtet werden. Aus den Beobachtungen der Bewegungen der Sterne des zentralen Sternhaufens ergibt sich, dass sich innerhalb dieser Region von 15,4 Millionen km Durchmesser eine Masse von geschätzten 4,31 Millionen Sonnenmassen befinden muss.[15] Die im Rahmen der Relativitätstheorie plausibelste und einzige mit allen Beobachtungen konsistente Erklärung für diese große Massenkonzentration ist die Anwesenheit eines Schwarzen Lochs.

Am 9. November 2010 machte Doug Finkbeiner vom Harvard-Smithsonian Center for Astrophysics bekannt, dass er zwei riesenhafte kugelförmige Blasen entdeckt habe, die aus der Mitte der Milchstraße nach Norden und Süden hinausgreifen. Die Entdeckung ist mit der Hilfe von Daten des Fermi Gamma-ray Space Telescope gelungen. Der Durchmesser der Blasen beträgt jeweils etwa 25.000 Lichtjahre; sie erstrecken sich am südlichen Nachthimmel von der Jungfrau bis zum Kranich. Ihr Ursprung ist bisher noch nicht geklärt.[16][17]

Größenvergleich
Man bekommt eine anschauliche Vorstellung von der Größe unserer Galaxis mit ihren 100 bis 300 Milliarden Sternen, wenn man sie sich im Maßstab 1:1017 verkleinert als Schneetreiben auf einem Gebiet von 10 km Durchmesser und einer Höhe von etwa 1 km im Mittel vorstellt. Jede Schneeflocke entspricht dabei einem Stern und es gibt etwa drei Stück pro Kubikmeter. Unsere Sonne hätte in diesem Maßstab einen Durchmesser von etwa 10 nm, wäre also kleiner als ein Virus. Selbst die Plutobahn, die sich im Mittel etwa 40-mal so weit von der Sonne befindet wie die Bahn der Erde, läge mit einem Durchmesser von 0,1 mm an der Grenze der visuellen Sichtbarkeit. Pluto selbst hätte ebenso wie die Erde lediglich atomare Dimension. Damit demonstriert dieses Modell auch die geringe durchschnittliche Massendichte unserer Galaxis.
Die Sonne umkreist das Zentrum des Milchstraßensystems in einem Abstand von 25.000 bis 28.000 Lichtjahren (≈ 250 Em oder 7,94 ± 0,42 kpc)[18] und befindet sich nördlich der Mittelebene der galaktischen Scheibe innerhalb des Orion-Arms, in einem weitgehend staubfreien Raumgebiet, das als „Lokale Blase“ bekannt ist. Für einen Umlauf um das Zentrum der Galaxis, ein so genanntes galaktisches Jahr, benötigt sie 220 bis 240 Millionen Jahre, was einer Rotationsgeschwindigkeit von etwa 220 km/s entspricht. Die Erforschung dieser Rotation ist mittels der Eigenbewegung und der Radialgeschwindigkeit vieler Sterne möglich; aus ihnen wurden um 1930 die Oortschen Rotationsformeln abgeleitet. Heutzutage kann auch die durch die Umlaufbewegung des Sonnensystems bedingte scheinbare Bewegung des Milchstraßenzentrums gegenüber Hintergrundquellen direkt beobachtet werden, so dass die Umlaufgeschwindigkeit des Sonnensystems unmittelbar messbar ist.[19] Neuere Messungen haben eine Umlaufgeschwindigkeit von ca. 267 km/s (961.200 km/h) ergeben.[20]

Das Sonnensystem umläuft das galaktische Zentrum nicht auf einer ungestörten ebenen Keplerbahn. Die in der Scheibe des Milchstraßensystems verteilte Masse übt eine starke Störung aus, so dass die Sonne zusätzlich zu ihrer Umlaufbahn um das Zentrum auch regelmäßig durch die Scheibe auf und ab oszilliert. Die Scheibe durchquert sie dabei etwa alle 30 bis 45 Millionen Jahre einmal.[21] Vor ca. 1,5 Millionen Jahren hat sie die Scheibe in nördlicher Richtung passiert und befindet sich jetzt etwa 65 Lichtjahre (ca. 20 pc)[22] über ihr. Die größte Entfernung wird etwa 250 Lichtjahre (80 pc) betragen, dann kehrt sich die Bewegung wieder um.[21]

Größere datierbare Krater auf der Erde sowie erdgeschichtliche Massenaussterben scheinen eine Periodizität von 34 bis 37 Millionen Jahren aufzuweisen, was auffällig mit der Periodizität der Scheibenpassagen übereinstimmt. Möglicherweise stören während einer Scheibendurchquerung die in Scheibennähe stärker werdenden Gravitationsfelder die Oortsche Wolke des Sonnensystems, so dass eine größere Anzahl von Kometen ins innere Sonnensystem gelangt und die Anzahl schwerer Impakte auf der Erde zunimmt. Die betreffenden Perioden sind jedoch bisher nicht genau genug bekannt, um definitiv einen Zusammenhang festzustellen;[21] neuere Ergebnisse (Scheibendurchgang alle 42 ± 2 Millionen Jahre) sprechen eher dagegen.[23] Eine neue Studie des Max-Planck Instituts für Astronomie hat gezeigt, dass es sich bei der scheinbaren Periodizität der Einschläge um statistische Artefakte handelt und es keinen solchen Zusammenhang gibt.

Um das Milchstraßensystem herum sind einige Zwerggalaxien versammelt. Die bekanntesten davon sind die Große und die Kleine Magellansche Wolke, mit denen das Milchstraßensystem über eine etwa 300.000 Lichtjahre lange Wasserstoffgasbrücke, dem Magellanschen Strom, verbunden ist.

Die dem Milchstraßensystem am nächsten gelegene Galaxie ist der Canis-Major-Zwerg, mit einer Entfernung von 42.000 Lichtjahren vom Zentrum des Milchstraßensystems und 25.000 Lichtjahren von unserem Sonnensystem. Die Zwerggalaxie wird zurzeit von den Gezeitenkräften des Milchstraßensystems auseinandergerissen und hinterlässt dabei ein Filament aus Sternen, das sich um die Galaxis windet, den so genannten Monoceros-Ring. Ob es sich dabei allerdings tatsächlich um die Überreste einer Zwerggalaxie oder um eine zufällige, projektionsbedingte Häufung handelt, ist derzeit noch nicht sicher. Andernfalls wäre die 50.000 Lichtjahre vom galaktischen Zentrum entfernte Sagittarius-Zwerggalaxie die nächste Galaxie, die ebenfalls gerade durch das Milchstraßensystem einverleibt wird.

Das Milchstraßensystem verleibt sich beständig Zwerggalaxien ein und nimmt dadurch an Masse zu. Während der Verschmelzung hinterlassen die Zwergsysteme Ströme aus Sternen und interstellarer Materie, die durch die Gezeitenkräfte des Milchstraßensystems aus den kleinen Galaxien herausgerissen werden (siehe auch: Wechselwirkende Galaxien). Dadurch entstehen Strukturen wie der Magellansche Strom, der Monoceros-Ring und der Virgo-Strom, sowie die anderen Hochgeschwindigkeitswolken in der Umgebung unserer Galaxis.

Lokale Gruppe
Mit der Andromeda-Galaxie, dem Dreiecksnebel (M 33) und einigen anderen kleineren Galaxien bildet das Milchstraßensystem die Lokale Gruppe, wobei das Milchstraßensystem die massereichste Galaxie darunter ist, obwohl es nicht die größte Ausdehnung besitzt. Die Lokale Gruppe ist Bestandteil des Virgo-Superhaufens, der nach dem Virgohaufen in seinem Zentrum benannt ist. Auf diesen bewegt sich die Lokale Gruppe zu. Der lokale Superhaufen strebt mit anderen Großstrukturen dem Shapley-Superhaufen entgegen (die frühere Annahme, Ziel dieses Strebens sei der Große Attraktor, ist überholt).[25]

Die Andromeda-Galaxie ist eine der wenigen Galaxien im Universum, deren Spektrum eine Blauverschiebung aufweist: Die Andromeda-Galaxie und das Milchstraßensystem bewegen sich mit einer Geschwindigkeit von 120 km/s aufeinander zu. Allerdings gibt die Blauverschiebung nur Aufschluss über die Geschwindigkeitskomponente parallel zur Verbindungslinie beider Systeme, während die Komponente senkrecht zu dieser Linie unbekannt ist. Vermutlich werden die beiden Galaxien in etwa drei Milliarden Jahren zusammenstoßen und zu einer größeren Galaxie verschmelzen. Für den Ablauf der Kollision können mangels Kenntnis der Raumgeschwindigkeiten und wegen der Komplexität der beim Zusammenstoß ablaufenden Prozesse nur Wahrscheinlichkeitsaussagen gemacht werden.[26] Nach der Verschmelzung der beiden Galaxien wird das Endprodukt voraussichtlich eine massereiche elliptische Galaxie sein. Als Name für diese Galaxie wird von Cox-Loeb 2008 in ihrem Artikel der Arbeitsname „Milkomeda“ benutzt, eine Verschmelzung des englischen Milky Way und Andromeda.[26]

Alter
Messungen aus dem Jahr 2004 zufolge ist das Milchstraßensystem etwa 13,6 Milliarden Jahre alt. Die Genauigkeit dieser Abschätzung, die das Alter anhand des Berylliumanteils einiger Kugelsternhaufen bestimmt, wird mit etwa 800 Millionen Jahren angegeben. Da das Alter des Universums von 13,8 Milliarden Jahren als recht verlässlich bestimmt gilt, hieße das, dass die Entstehung der Milchstraße auf die Frühzeit des Universums datiert.

2007 wurde zunächst für den Stern HE 1523-0901 im galaktischen Halo von der ESO-Sternwarte in Hamburg ein Alter von 13,2 Milliarden Jahren festgestellt[27]. 2014 wurde dann für den Stern SM0313, 6000 Lj von der Erde entfernt, von der Australian National University ein Alter von 13,6 Milliarden Jahren dokumentiert. Als älteste bekannte Objekte der Milchstraße setzen diese Datierungen eine unterste Grenze, die im Bereich der Messgenauigkeit der Abschätzung von 2004 liegt.

Nach derselben Methode kann das Alter der dünnen galaktischen Scheibe durch die ältesten dort gemessenen Objekte abgeschätzt werden, wodurch sich ein Alter von etwa 8,8 Milliarden Jahren mit einer Schätzbreite von etwa 1,7 Milliarden Jahren ergibt. Auf dieser Basis ergäbe sich eine zeitliche Lücke von etwa drei bis sieben Milliarden Jahren zwischen der Bildung des galaktischen Zentrums und der äußeren Scheibe.

The Milky Way is the galaxy that contains our Solar System.[15][16][17][nb 1] Its name “milky” is derived from its appearance as a dim glowing band arching across the night sky in which the naked eye cannot distinguish individual stars. The term “Milky Way” is a translation of the Latin via lactea, from the Greek γαλαξίας κύκλος (galaxías kýklos, "milky circle").[18][19][20] From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within. Galileo Galilei first resolved the band of light into individual stars with his telescope in 1610. Up until the early 1920s, most astronomers thought that all of the stars in the universe were contained inside of the Milky Way. Following the 1920 Great Debate between the astronomers Harlow Shapley and Heber Curtis,[21] observations by Edwin Hubble definitively showed that the Milky Way is just one of many billions of galaxies.[22]

The Milky Way is a barred spiral galaxy some 100,000–120,000 light-years in diameter, which contains 100–400 billion stars. It may contain at least as many planets as well.[23][24] The Solar System is located within the disk, about 27,000 light-years away from the Galactic Center, on the inner edge of one of the spiral-shaped concentrations of gas and dust called the Orion Arm. The stars in the inner ≈10,000 light-years form a bulge and one or more bars that radiate from the bulge. The very center is marked by an intense radio source, named Sagittarius A*, which is likely to be a supermassive black hole.

Stars and gases at a wide range of distances from the Galactic Center orbit at approximately 220 kilometers per second. The constant rotation speed contradicts the laws of Keplerian dynamics and suggests that much of the mass of the Milky Way does not emit or absorb electromagnetic radiation. This mass has been given the name “dark matter”.[25] The rotational period is about 240 million years at the position of the Sun.[11] The Milky Way as a whole is moving at a velocity of approximately 600 km per second with respect to extragalactic frames of reference. The oldest known star in the Milky Way is at least 13.82 [26] billion years old and thus must have formed shortly after the Big Bang.[7]

Surrounded by several smaller satellite galaxies, the Milky Way is part of the Local Group of galaxies, which forms a subcomponent of the Virgo Supercluster, which again forms a subcomponent of the Laniakea supercluster.
When observing the night sky, the term “Milky Way” is limited to the hazy band of white light some 30 degrees wide arcing across the sky.[29] Although all of the individual stars that can be seen in the entire sky with the naked eye are part of the Milky Way Galaxy,[30] the light in this band originates from the accumulation of un-resolved stars and other material when viewed in the direction of the Galactic plane. Dark regions within the band, such as the Great Rift and the Coalsack, correspond to areas where light from distant stars is blocked by interstellar dust.

The Milky Way has a relatively low surface brightness. Its visibility can be greatly reduced by background light such as light pollution or stray light from the Moon. It is readily visible when the limiting magnitude is +5.1 or better and shows a great deal of detail at +6.1.[31] This makes the Milky Way difficult to see from any brightly lit urban or suburban location, but very prominent when viewed from a rural area when the Moon is below the horizon.[nb 2]

As viewed from Earth, the visible region of the Milky Way’s Galactic plane occupies an area of the sky that includes 30 constellations. The center of the Milky Way lies in the direction of the constellation Sagittarius; it is here that the Milky Way is brightest. From Sagittarius, the hazy band of white light appears to pass westward to the Galactic anticenter in Auriga. The band then continues westward the rest of the way around the sky, back to Sagittarius. The band divides the night sky into two roughly equal hemispheres.

The Galactic plane is inclined by about 60 degrees to the ecliptic (the plane of Earth’s orbit). Relative to the celestial equator, it passes as far north as the constellation of Cassiopeia and as far south as the constellation of Crux, indicating the high inclination of Earth’s equatorial plane and the plane of the ecliptic, relative to the Galactic plane. The north Galactic pole is situated at right ascension 12h 49m, declination +27.4° (B1950) near β Comae Berenices, and the south Galactic pole is near α Sculptoris. Because of this high inclination, depending on the time of night and year, the arc of Milky Way may appear relatively low or relatively high in the sky. For observers from approximately 65 degrees north to 65 degrees south on Earth’s surface, the Milky Way passes directly overhead twice a day.
The stellar disk of the Milky Way Galaxy is approximately 100,000 ly (30 kpc) in diameter, and is, on average, about 1,000 ly (0.3 kpc) thick.[2][3] As a guide to the relative physical scale of the Milky Way, if it were reduced to 100 m in diameter, the Solar System, including the hypothesized Oort cloud, would be no more than 1 mm in width, about the size of a grain of sand. The nearest star, Proxima Centauri, would be 4.2 mm distant.[nb 3] Alternatively visualized, if the Solar System out to Neptune were the size of a US quarter (25mm), the Milky Way would have a diameter of 4,000 kilometers, or approximately the breadth of the United States.

Estimates for the mass of the Milky Way vary, depending upon the method and data used. At the low end of the estimate range, the mass of the Milky Way is 5.8×1011 solar masses (M☉), somewhat smaller than the Andromeda Galaxy.[33][34][35] Measurements using the Very Long Baseline Array in 2009 found velocities as large as 254 km/s for stars at the outer edge of the Milky Way.[36] As the orbital velocity depends on the total mass inside the orbital radius, this suggests that the Milky Way is more massive, roughly equaling the mass of Andromeda Galaxy at 7×1011 M☉ within 160,000 ly (49 kpc) of its center.[37] A 2010 measurement of the radial velocity of halo stars finds the mass enclosed within 80 kiloparsecs is 7×1011 M☉.[38] According to a study published in 2014, the mass of the entire Milky Way is estimated to be 8.5×1011 M☉,[39] which is about half the mass of the Andromeda Galaxy.[39]

Most of the mass of the Milky Way appears to be matter of unknown form that interacts with other matter through gravitational but not electromagnetic forces, which is dubbed dark matter. A dark matter halo is spread out relatively uniformly to a distance beyond one hundred kiloparsecs from the Galactic Center. Mathematical models of the Milky Way suggest that the total mass of the entire Galaxy lies in the range 1–1.5×1012 M☉.[8] More recent studies indicate a mass as large as 4.5×1012 M☉ [40] and as small as 0.8×1012 M☉.[41] The Milky Way contains at least 100 billion planets[42] and between 200 and 400 billion stars.[43][44] The exact figure depends on the number of very low-mass, or dwarf stars, which are hard to detect, especially at distances of more than 300 ly (90 pc) from the Sun. As a comparison, the neighboring Andromeda Galaxy contains an estimated one trillion (1012) stars.[45] Filling the space between the stars is a disk of gas and dust called the interstellar medium. This disk has at least a comparable extent in radius to the stars,[46] whereas the thickness of the gas layer ranges from hundreds of light years for the colder gas to thousands of light years for warmer gas.[47][48] Both gravitational microlensing and planetary transit observations indicate that there may be at least as many planets bound to stars as there are stars in the Milky Way[23][49] and microlensing measurements indicate that there are more rogue planets not bound to host stars than there are stars.[50][51] The Milky Way Galaxy contains at least one planet per star, resulting in 100–400 billion planets, according to a January 2013 study of the five-planet star system Kepler-32 with the Kepler space observatory.[24] A different January 2013 analysis of Kepler data estimated that at least 17 billion Earth-sized exoplanets reside in the Milky Way Galaxy.[52] On November 4, 2013, astronomers reported, based on Kepler space mission data, that there could be as many as 40 billion Earth-sized planets orbiting in the habitable zones of Sun-like stars and red dwarfs within the Milky Way Galaxy.[53][54][55] 11 billion of these estimated planets may be orbiting sun-like stars.[56] The nearest such planet may be 12 light-years away, according to the scientists.[53][54] Such Earth-sized planets may be more numerous than gas giants.[23] Besides exoplanets, "exocomets", comets beyond the Solar System, have also been detected and may be common in the Milky Way Galaxy.[52]

The disk of stars in the Milky Way does not have a sharp edge beyond which there are no stars. Rather, the concentration of stars decreases with distance from the center of the Milky Way. For reasons that are not understood, beyond a radius of roughly 40,000 ly (13 kpc) from the center, the number of stars per cubic parsec drops much faster with radius.[57] Surrounding the Galactic disk is a spherical Galactic Halo of stars and globular clusters that extends further outward, but is limited in size by the orbits of two Milky Way satellites, the Large and the Small Magellanic Clouds, whose closest approach to the Galactic Center is about 180,000 ly (55 kpc).[58] At this distance or beyond, the orbits of most halo objects would be disrupted by the Magellanic Clouds. Hence, such objects would probably be ejected from the vicinity of the Milky Way. The integrated absolute visual magnitude of the Milky Way is estimated to be −20.9.

The Milky Way consists of a bar-shaped core region surrounded by a disk of gas, dust and stars. The gas, dust and stars are organized in roughly logarithmic spiral arm structures (see Spiral arms below). The mass distribution within the Milky Way closely resembles the type SBc in the Hubble classification, which represents spiral galaxies with relatively loosely wound arms.[1] Astronomers first began to suspect that the Milky Way is a barred spiral galaxy, rather than an ordinary spiral galaxy, in the 1990s.[61] Their suspicions were confirmed by the Spitzer Space Telescope observations in 2005[62] that showed the Milky Way’s central bar to be larger than previously suspected.

Galactic quadrants
Main article: Galactic quadrant
A galactic quadrant, or quadrant of the galaxy, refers to one of four circular sectors in the division of the Milky Way. In actual astronomical practice, the delineation of the galactic quadrants is based upon the galactic coordinate system, which places the Sun as the pole of the mapping system.

Quadrants are described using ordinals—for example, "1st galactic quadrant",[63] "second galactic quadrant",[64] or "third quadrant of the Galaxy".[65] Viewing from the north galactic pole with 0 degrees (°) as the ray that runs starting from the Sun and through the Galactic Center, the quadrants are as follow:

1st galactic quadrant – 0° ≤ longitude (ℓ) ≤ 90°[66] 2nd galactic quadrant – 90° ≤ ℓ ≤ 180°[64] 3rd galactic quadrant – 180° ≤ ℓ ≤ 270°[65] 4th galactic quadrant – 270° ≤ ℓ ≤ 360° (0°)[63] The Sun is 26,000–28,000 ly (8.0–8.6 kpc) from the Galactic Center. This value is estimated using geometric-based methods or by measuring selected astronomical objects that serve as standard candles, with different techniques yielding various values within this approximate range.[10][67][68][69][70] In the inner few kpc (around 10,000 light-years radius) is a dense concentration of mostly old stars in a roughly spheroidal shape called the bulge.[71] It has been proposed that the Milky Way lacks a bulge formed due to a collision and merger between previous galaxies and that instead has a pseudobulge formed by its central bar.[72]

The Galactic Center is marked by an intense radio source named Sagittarius A*. The motion of material around the center indicates that Sagittarius A* harbors a massive, compact object.[73] This concentration of mass is best explained as a supermassive black hole[nb 4][10][67] with an estimated mass of 4.1–4.5 million times the mass of the Sun.[67] Observations indicate that there are supermassive black holes located near the center of most normal galaxies.[74][75]

The nature of the Milky Way’s bar is actively debated, with estimates for its half-length and orientation spanning from 1–5 kpc (3,000–16,000 ly) and 10–50 degrees relative to the line of sight from Earth to the Galactic Center.[69][70][76] Certain authors advocate that the Milky Way features two distinct bars, one nestled within the other.[77] In most galaxies, Wang et al. report, the rate of accretion of the supermassive black hole is slow, but the Milky Way seems to be an important exception. X-ray emission is aligned with the massive stars surrounding the central bar.[78] However, RR Lyr variables do not trace a prominent Galactic bar.[70][79][80] The bar may be surrounded by a ring called the "5-kpc ring" that contains a large fraction of the molecular hydrogen present in the Milky Way, as well as most of the Milky Way’s star-formation activity. Viewed from the Andromeda Galaxy, it would be the brightest feature of the Milky Way.[81]

In 2010, two gigantic spherical bubbles of high energy emission were detected to the north and the south of the Milky Way core, using data of the Fermi Gamma-ray Space Telescope. The diameter of each of the bubbles is about 25,000 light-years (7.7 kpc); they stretch up to Grus and to Virgo on the night-sky of the southern hemisphere.[82][83] Subsequently, observations with the Parkes Telescope at radio frequencies identified polarized emission that is associated with the Fermi bubbles. These observations are best interpreted as a magnetized outflow driven by star formation in the central 640 ly (200 pc) of the Milky Way.[84]

Spiral arms
Outside the gravitational influence of the Galactic bars, astronomers generally organize the structure of the interstellar medium and stars in the disk of the Milky Way into four spiral arms.[85] Spiral arms typically contain a higher density of interstellar gas and dust than the Galactic average as well as a greater concentration of star formation, as traced by H II regions[86][87] and molecular clouds.[88]

Maps of the Milky Way’s spiral structure are notoriously uncertain and exhibit striking differences.[60][85][87][89][90][91][92][93] Some 150 years after Alexander (1852)[94] first suggested that the Milky Way was a spiral, there is currently no consensus on the nature of the Milky Way’s spiral arms. Perfect logarithmic spiral patterns only crudely describe features near the Sun,[87][92] because galaxies commonly have arms that branch, merge, twist unexpectedly, and feature a degree of irregularity.[70][92][93] The possible scenario of the Sun within a spur / Local arm[87] emphasizes that point and indicates that such features are probably not unique, and exist elsewhere in the Milky Way.[92]

As in most spiral galaxies, each spiral arm can be described as a logarithmic spiral. Estimates of the pitch angle of the arms range from about 7° to 25°.[95][96] There are thought to be four spiral arms that all start near the Milky Way’s center. These are named as follows, with the positions of the arms shown in the image at right:
Two spiral arms, the Scutum–Centaurus arm and the Carina–Sagittarius arm, have tangent points inside the Sun’s orbit about the center of the Milky Way. If these arms contain an overdensity of stars compared to the average density of stars in the Galactic disk, it would be detectable by counting the stars near the tangent point. Two surveys of near-infrared light, which is sensitive primarily to red giants and not affected by dust extinction, detected the predicted overabundance in the Scutum–Centaurus arm but not in the Carina–Sagittarius arm: the Scutum-Centaurus Arm contains approximately 30% more red giants than would be expected in the absence of a spiral arm.[95][98] In 2008, Robert Benjamin of the University of Wisconsin–Whitewater used this observation to suggest that the Milky Way possesses only two major stellar arms: the Perseus arm and the Scutum–Centaurus arm. The rest of the arms contain excess gas but not excess old stars.[60] In December 2013, astronomers found that the distribution of young stars and star-forming regions matches the four-arm spiral description of the Milky Way.[99][100][101] Thus, the Milky Way appears to have two spiral arms as traced by old stars and four spiral arms as traced by gas and young stars. The explanation for this apparent discrepancy is unclear.[101]

The Near 3 kpc Arm (also called Expanding 3 kpc Arm or simply 3 kpc Arm) was discovered in the 1950s by astronomer van Woerden and collaborators through 21-centimeter radio measurements of HI (atomic hydrogen).[102][103] It was found to be expanding away from the center of the Milky Way at more than 50 km/s. It is located in the fourth galactic quadrant at a distance of about 5.2 kpc from the Sun and 3.3 kpc from the Galactic Center. The Far 3 kpc Arm was discovered in 2008 by astronomer Tom Dame (Harvard-Smithsonian CfA). It’s located in the first galactic quadrant at a distance of 3 kpc (about 10,000 ly) from the Galactic Center.[103][104]

A simulation published in 2011 suggested that the Milky Way may have obtained its spiral arm structure as a result of repeated collisions with the Sagittarius Dwarf Elliptical Galaxy.[105]

It has been suggested that the Milky Way contains two different spiral patterns: an inner one, formed by the Sagittarius arm, that rotates fast and an outer one, formed by the Carina and Perseus arms, whose rotation velocity is slower and whose arms are tightly wound. In this scenario, suggested by numerical simulations of the dynamics of the different spiral arms, the outer pattern would form an outer pseudoring[106] and the two patterns would be connected by the Cygnus arm.[107]

Outside of the major spiral arms is the Monoceros Ring (or Outer Ring), a ring of gas and stars torn from other galaxies billions of years ago. However, several members of the scientific community recently restated their position affirming the Monoceros structure is nothing more than an over-density produced by the flared and warped thick disk of the Milky Way.[108]

Halo
The Galactic disk is surrounded by a spheroidal halo of old stars and globular clusters, of which 90% lie within 100,000 light-years (30 kpc) of the Galactic Center.[109] However, a few globular clusters have been found farther, such as PAL 4 and AM1 at more than 200,000 light-years away from the Galactic Center. About 40% of the Milky Way’s clusters are on retrograde orbits, which means they move in the opposite direction from the Milky Way rotation.[110] The globular clusters can follow rosette orbits about the Milky Way, in contrast to the elliptical orbit of a planet around a star.[111]

Although the disk contains dust that obscures the view in some wavelengths, the halo component does not. Active star formation takes place in the disk (especially in the spiral arms, which represent areas of high density), but does not take place in the halo, as there is little gas cool enough to collapse into stars.[11] Open clusters are also located primarily in the disk.[112]

Discoveries in the early 21st century have added dimension to the knowledge of the Milky Way’s structure. With the discovery that the disk of the Andromeda Galaxy (M31) extends much further than previously thought,[113] the possibility of the disk of the Milky Way Galaxy extending further is apparent, and this is supported by evidence from the discovery of the Outer Arm extension of the Cygnus Arm[97][114] and of a similar extension of the Scutum-Centaurus Arm.[115] With the discovery of the Sagittarius Dwarf Elliptical Galaxy came the discovery of a ribbon of galactic debris as the polar orbit of the dwarf and its interaction with the Milky Way tears it apart. Similarly, with the discovery of the Canis Major Dwarf Galaxy, it was found that a ring of galactic debris from its interaction with the Milky Way encircles the Galactic disk.

On January 9, 2006, Mario Jurić and others of Princeton University announced that the Sloan Digital Sky Survey of the northern sky found a huge and diffuse structure (spread out across an area around 5,000 times the size of a full moon) within the Milky Way that does not seem to fit within current models. The collection of stars rises close to perpendicular to the plane of the spiral arms of the Milky Way. The proposed likely interpretation is that a dwarf galaxy is merging with the Milky Way. This galaxy is tentatively named the Virgo Stellar Stream and is found in the direction of Virgo about 30,000 light-years (9 kpc) away.[116]

Gaseous halo
In addition to the stellar halo, the Chandra X-ray Observatory, XMM-Newton, and Suzaku have provided evidence that there is a gaseous halo with a large amount of hot gas. The halo extends for hundreds of thousand of light years, much further than the stellar halo and close to the distance of the Large and Small Magellanic Clouds. The mass of this hot halo is nearly equivalent to the mass of the Milky Way itself.[117][118][119] The temperature of this halo gas is between 1 million and 2.5 million kelvin, a few hundred times hotter than the surface of the sun.[120]

Observations of distant galaxies indicate that the Universe had about one-sixth as much baryonic (ordinary) matter as dark matter when it was just a few billion years old. However, only about half of those baryons are accounted for in the modern Universe based on observations of nearby galaxies like the Milky Way.[121] If the finding that the mass of the halo is comparable to the mass of the Milky Way is confirmed, it could be the identity of the missing baryons around the Milky Way.

The Sun is near the inner rim of the Orion Arm, within the Local Fluff of the Local Bubble, and in the Gould Belt, at a distance of 8.33 ± 0.35 kiloparsecs (27,200 ± 1,100 ly) from the Galactic Center.[10][67][122] The Sun is currently 5–30 parsecs (16–98 ly) from the central plane of the Galactic disk.[123] The distance between the local arm and the next arm out, the Perseus Arm, is about 2,000 parsecs (6,500 ly).[124] The Sun, and thus the Solar System, is found in the Galactic habitable zone.

There are about 208 stars brighter than absolute magnitude 8.5 within a sphere with a radius of 15 parsecs (49 ly) from the Sun, giving a density of one star per 69 cubic parsec, or one star per 2,360 cubic light-year (from List of nearest bright stars). On the other hand, there are 64 known stars (of any magnitude, not counting 4 brown dwarfs) within 5 parsecs (16 ly) of the Sun, giving a density of about one star per 8.2 cubic parsec, or one per 284 cubic light-year (from List of nearest stars). This illustrates the fact that there are far more faint stars than bright stars: in the entire sky, there are about 500 stars brighter than apparent magnitude 4 but 15.5 million stars brighter than apparent magnitude 14.[125]

The apex of the Sun’s way, or the solar apex, is the direction that the Sun travels through space in the Milky Way. The general direction of the Sun’s Galactic motion is towards the star Vega near the constellation of Hercules, at an angle of roughly 60 sky degrees to the direction of the Galactic Center. The Sun’s orbit about the Milky Way is expected to be roughly elliptical with the addition of perturbations due to the Galactic spiral arms and non-uniform mass distributions. In addition, the Sun oscillates up and down relative to the Galactic plane approximately 2.7 times per orbit. This is very similar to how a simple harmonic oscillator works with no drag force (damping) term. These oscillations were until recently thought to coincide with mass lifeform extinction periods on Earth.[126] However, a reanalysis of the effects of the Sun’s transit through the spiral structure based on CO data has failed to find a correlation.[127]

It takes the Solar System about 240 million years to complete one orbit of the Milky Way (a Galactic year),[11] so the Sun is thought to have completed 18–20 orbits during its lifetime and 1/1250 of a revolution since the origin of humans. The orbital speed of the Solar System about the center of the Milky Way is approximately 220 km/s or 0.073% of the speed of light. At this speed, it takes around 1,400 years for the Solar System to travel a distance of 1 light-year, or 8 days to travel 1 AU (astronomical unit).

The stars and gas in the Milky Way rotate about its center differentially, meaning that the rotation period varies with location. As is typical for spiral galaxies, the orbital speed of most stars in the Milky Way does not depend strongly on their distance from the center. Away from the central bulge or outer rim, the typical stellar orbital speed is between 210 and 240 km/s.[131] Hence the orbital period of the typical star is directly proportional only to the length of the path traveled. This is unlike the situation within the Solar System, where two-body gravitational dynamics dominate and different orbits have significantly different velocities associated with them. The rotation curve (shown in the figure) describes this rotation. Toward the center of the Milky Way the orbit speeds are too low, whereas beyond 7 kpcs the speeds are too high to match what would be expected from the universal law of gravitation.

If the Milky Way contained only the mass observed in stars, gas, and other baryonic (ordinary) matter, the rotation speed would decrease with distance from the center. However, the observed curve is relatively flat, indicating that there is additional mass that cannot be detected directly with electromagnetic radiation. This inconsistency is attributed to dark matter.[25] The rotation curve of the Milky Way agrees with the universal rotation curve of spiral galaxies, the strongest proof of the existence of dark matter in galaxies. Alternatively, a minority of astronomers propose that a modification of the law of gravity may explain the observed rotation curve.
The Milky Way began as one or several small overdensities in the mass distribution in the Universe shortly after the Big Bang. Some of these overdensities were the seeds of globular clusters in which the oldest remaining stars in what is now the Milky Way formed. These stars and clusters now comprise the stellar halo of the Milky Way. Within a few billion years of the birth of the first stars, the mass of the Milky Way was large enough so that it was spinning relatively quickly. Due to conservation of angular momentum, this led the gaseous interstellar medium to collapse from a roughly spheroidal shape to a disk. Therefore, later generations of stars formed in this spiral disk. Most younger stars, including the Sun, are observed to be in the disk.[133][134]

Since the first stars began to form, the Milky Way has grown through both galaxy mergers (particularly early in the Milky Way’s growth) and accretion of gas directly from the Galactic halo.[134] The Milky Way is currently accreting material from two of its nearest satellite galaxies, the Large and Small Magellanic Clouds, through the Magellanic Stream. Direct accretion of gas is observed in high-velocity clouds like the Smith Cloud.[135][136] However, properties of the Milky Way such as stellar mass, angular momentum, and metallicity in its outermost regions suggest it has undergone no mergers with large galaxies in the last 10 billion years. This lack of recent major mergers is unusual among similar spiral galaxies; its neighbour the Andromeda Galaxy appears to have a more typical history shaped by more recent mergers with relatively large galaxies.[137][138]

According to recent studies, the Milky Way as well as Andromeda lie in what in the galaxy color–magnitude diagram is known as the green valley, a region populated by galaxies in transition from the blue cloud (galaxies actively forming new stars) to the red sequence (galaxies that lack star formation). Star-formation activity in green valley galaxies is slowing as they run out of star-forming gas in the interstellar medium. In simulated galaxies with similar properties, star formation will typically have been extinguished within about five billion years from now, even accounting for the expected, short-term increase in the rate of star formation due to the collision between both the Milky Way and the Andromeda Galaxy.[139] In fact, measurements of other galaxies similar to the Milky Way suggest it is among the reddest and brightest spiral galaxies that are still forming new stars and it is just slightly bluer than the bluest red sequence galaxies.[140]

Age[edit] The ages of individual stars in the Milky Way can be estimated by measuring the abundance of long-lived radioactive elements such as thorium-232 and uranium-238, then comparing the results to estimates of their original abundance, a technique called nucleocosmochronology. These yield values of about 12.5 ± 3 billion years for CS 31082-001[141] and 13.8 ± 4 billion years for BD +17° 3248.[142] Once a white dwarf is formed, it begins to undergo radiative cooling and the surface temperature steadily drops. By measuring the temperatures of the coolest of these white dwarfs and comparing them to their expected initial temperature, an age estimate can be made. With this technique, the age of the globular cluster M4 was estimated as 12.7 ± 0.7 billion years. Globular clusters are among the oldest objects in the Milky Way Galaxy, which thus set a lower limit on the age of the Milky Way. Age estimates of the oldest of these clusters gives a best fit estimate of 12.6 billion years, and a 95% confidence upper limit of 16 billion years.[143]

In 2007, a star in the galactic halo, HE 1523-0901, was estimated to be about 13.2 billion years old, ≈0.5 billion years less than the age of the universe. As the oldest known object in the Milky Way at that time, this measurement placed a lower limit on the age of the Milky Way.[144] This estimate was determined using the UV-Visual Echelle Spectrograph of the Very Large Telescope to measure the relative strengths of spectral lines caused by the presence of thorium and other elements created by the R-process. The line strengths yield abundances of different elemental isotopes, from which an estimate of the age of the star can be derived using nucleocosmochronology.[144]

The age of stars in the galactic thin disk has also been estimated using nucleocosmochronology. Measurements of thin disk stars yield an estimate that the thin disk formed 8.8 ± 1.7 billion years ago. These measurements suggest there was a hiatus of almost 5 billion years between the formation of the galactic halo and the thin disk.
The Milky Way and the Andromeda Galaxy are a binary system of giant spiral galaxies belonging to a group of 50 closely bound galaxies known as the Local Group, itself being part of the Virgo Supercluster. The Virgo Supercluster forms part of a greater structure, called Laniakea.[146]

Two smaller galaxies and a number of dwarf galaxies in the Local Group orbit the Milky Way. The largest of these is the Large Magellanic Cloud with a diameter of 14,000 light-years. It has a close companion, the Small Magellanic Cloud. The Magellanic Stream is a stream of neutral hydrogen gas extending from these two small galaxies across 100° of the sky. The stream is thought to have been dragged from the Magellanic Clouds in tidal interactions with the Milky Way.[147] Some of the dwarf galaxies orbiting the Milky Way are Canis Major Dwarf (the closest), Sagittarius Dwarf Elliptical Galaxy, Ursa Minor Dwarf, Sculptor Dwarf, Sextans Dwarf, Fornax Dwarf, and Leo I Dwarf. The smallest Milky Way dwarf galaxies are only 500 light-years in diameter. These include Carina Dwarf, Draco Dwarf, and Leo II Dwarf. There may still be undetected dwarf galaxies that are dynamically bound to the Milky Way, as well as some that have already been absorbed by the Milky Way, such as Omega Centauri.

In January 2006, researchers reported that the heretofore unexplained warp in the disk of the Milky Way has now been mapped and found to be a ripple or vibration set up by the Large and Small Magellanic Clouds as they orbit the Milky Way, causing vibrations when they pass through its edges. Previously, these two galaxies, at around 2% of the mass of the Milky Way, were considered too small to influence the Milky Way. However, in a computer model, the movement of these two galaxies creates a dark matter wake that amplifies their influence on the larger Milky Way.[148]

Current measurements suggest the Andromeda Galaxy is approaching us at 100 to 140 kilometers per second. In 3 to 4 billion years, there may be an Andromeda–Milky Way collision, depending on the importance of unknown lateral components to the galaxies’ relative motion. If they collide, the chance of individual stars colliding with each other is extremely low, but instead the two galaxies will merge to form a single elliptical galaxy or perhaps a large disk galaxy[149] over the course of about a billion years.[150]

Velocity
Although special relativity states that there is no "preferred" inertial frame of reference in space with which to compare the Milky Way, the Milky Way does have a velocity with respect to cosmological frames of reference.

One such frame of reference is the Hubble flow, the apparent motions of galaxy clusters due to the expansion of space. Individual galaxies, including the Milky Way, have peculiar velocities relative to the average flow. Thus, to compare the Milky Way to the Hubble flow, one must consider a volume large enough so that the expansion of the Universe dominates over local, random motions. A large enough volume means that the mean motion of galaxies within this volume is equal to the Hubble flow. Astronomers believe the Milky Way is moving at approximately 630 km per second with respect to this local co-moving frame of reference.[151] The Milky Way is moving in the general direction of the Great Attractor and other galaxy clusters, including the Shapley supercluster, behind it.[152] The Local Group (a cluster of gravitationally bound galaxies containing, among others, the Milky Way and the Andromeda Galaxy) is part of a supercluster called the Local Supercluster, centered near the Virgo Cluster: although they are moving away from each other at 967 km/s as part of the Hubble flow, this velocity is less than would be expected given the 16.8 million pc distance due to the gravitational attraction between the Local Group and the Virgo Cluster.[153]

Another reference frame is provided by the cosmic microwave background (CMB). The Milky Way is moving at 552 ± 6 km/s[13] with respect to the photons of the CMB, toward 10.5 right ascension, −24° declination (J2000 epoch, near the center of Hydra). This motion is observed by satellites such as the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP) as a dipole contribution to the CMB, as photons in equilibrium in the CMB frame get blue-shifted in the direction of the motion and red-shifted in the opposite direction.[13]

Etymology and mythology
Main articles: List of names for the Milky Way and Milky Way (mythology)
In western culture the name "Milky Way" is derived from its appearance as a dim un-resolved "milky" glowing band arching across the night sky. The term is a translation of the Classical Latin via lactea, in turn derived from the Hellenistic Greek γαλαξίας, short for γαλαξίας κύκλος (pr. galaktikos kyklos, "milky circle"). The Ancient Greek γαλαξίας (galaxias), from root γαλακτ-, γάλα (milk) + -ίας (forming adjectives), is also the root of "galaxy", the name for our, and later all such, collections of stars.[18][154][155][156] The Milky Way "milk circle" was just one of 11 circles the Greeks identified in the sky, others being the zodiac, the meridian, the horizon, the equator, the tropics of Cancer and Capricorn, Arctic and Antarctic circles, and two colure circles passing through both poles.

In Meteorologica (DK 59 A80), Aristotle (384–322 BC) wrote that the Greek philosophers Anaxagoras (ca. 500–428 BC) and Democritus (460–370 BC) proposed that the Milky Way might consist of distant stars. However, Aristotle himself believed the Milky Way to be caused by "the ignition of the fiery exhalation of some stars which were large, numerous and close together" and that the "ignition takes place in the upper part of the atmosphere, in the region of the world which is continuous with the heavenly motions."[158] The Neoplatonist philosopher Olympiodorus the Younger (c. 495–570 A.D.) criticized this view, arguing that if the Milky Way were sublunary it should appear different at different times and places on Earth, and that it should have parallax, which it does not. In his view, the Milky Way was celestial. This idea would be influential later in the Islamic world.[159]

The Persian astronomer Abū Rayhān al-Bīrūnī (973–1048) proposed that the Milky Way is "a collection of countless fragments of the nature of nebulous stars".[160] The Andalusian astronomer Avempace (d. 1138) proposed the Milky Way to be made up of many stars but appears to be a continuous image due to the effect of refraction in the Earth’s atmosphere, citing his observation of a conjunction of Jupiter and Mars in 1106 or 1107 as evidence.[158] Ibn Qayyim Al-Jawziyya (1292–1350) proposed that the Milky Way is "a myriad of tiny stars packed together in the sphere of the fixed stars" and that these stars are larger than planets.[161]

According to Jamil Ragep, the Persian astronomer Naṣīr al-Dīn al-Ṭūsī (1201–1274) in his Tadhkira writes: "The Milky Way, i.e. the Galaxy, is made up of a very large number of small, tightly clustered stars, which, on account of their concentration and smallness, seem to be cloudy patches. Because of this, it was likened to milk in color."[162]

Actual proof of the Milky Way consisting of many stars came in 1610 when Galileo Galilei used a telescope to study the Milky Way and discovered that it was composed of a huge number of faint stars.[163][164] In a treatise in 1755, Immanuel Kant, drawing on earlier work by Thomas Wright,[165] speculated (correctly) that the Milky Way might be a rotating body of a huge number of stars, held together by gravitational forces akin to the Solar System but on much larger scales.[166] The resulting disk of stars would be seen as a band on the sky from our perspective inside the disk. Kant also conjectured that some of the nebulae visible in the night sky might be separate "galaxies" themselves, similar to our own. Kant referred to both the Milky Way and the "extragalactic nebulae" as "island universes", a term still current up to the 1930s.[167][168][169]

The first attempt to describe the shape of the Milky Way and the position of the Sun within it was carried out by William Herschel in 1785 by carefully counting the number of stars in different regions of the visible sky. He produced a diagram of the shape of the Milky Way with the Solar System close to the center.[170]

In 1845, Lord Rosse construct

Posted by !!! Painting with Light !!! #schauer on 2014-10-14 22:29:36

Tagged: , Schauer , Christian , Painting , with , Light , Oberdiendorf , Hauzenberg , Passau , Germany , Deutschland , Bayern , Bavaria , Europe , Heaven , Sky , Aal , All , Star , Stern , Road , Way , Milk , Milch , Straße , Baum , Tree , Night , Nacht , Nuit , Noir , Notte , Noche , Black , Nature , Alien , UFO , Space , Weltraum , Future , Bulb , Long , Exposure , Explore , Tamron , Canon , Nikon , Sigma , Tripot , Stativ , After , Sunset , Sunrise , Landscape , Galaxy , Himmel , Starship , Armagedon , Movie , Wolke , Cloud , Moon , Sun , Luna , Mond , Midnight , Zwilling , Lion , Animal , Sternzeichen