IMG_5445

IMG_5445

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:33:14

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5417

IMG_5417

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:32:59

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5428

IMG_5428

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:33:04

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5413

IMG_5413

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:32:57

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5426

IMG_5426

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:33:03

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5414

IMG_5414

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:32:57

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5412

IMG_5412

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:32:57

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5416

IMG_5416

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:32:58

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

Boljoon in my “Gibraltar” cinematic mind (my #1 Popular Flickr Photo)

Boljoon in my

*******************************************************************************************
18,200++ views and counting…

The photographs appearing in this page are the exclusive intellectual property of Clee Villasor and are protected under Philippines and international copyright laws.

The intellectual property MAY NOT BE DOWNLOADED except by normal viewing process of the browser. The intellectual property may not be copied to another computer, transmitted , published, reproduced, stored, manipulated, projected, or altered in any way, including without limitation any digitization or synthesizing of the images, alone or with any other material, by use of computer or other electronic means or any other method or means now or hereafter known, without the written permission of Clee Villasor and payment of a fee or arrangement thereof.

No images are within Public Domain. Use of any image as the basis for another photographic concept or illustration is a violation of copyright.

2008 © Clee Villasor. All rights reserved.

View On Black

Always bring your work to the highest level. (With the shadows and highlights across these ruins of a watch tower, a quick glance will show a girl to the left, opposite her lover, facing the other direction.)

TIP: How to harness a perfect cinematic backdrop, look-and-feel artistry in your photos… PRE-VISUALIZE THE FINAL SCENE, BEFORE YOU HIT THE SHUTTER BUTTON! 😀

*******************************************************************************************

Last 16th of March 2008, Flickr buddy Melvin Tezon and I, joined along with 28 people from the Accenture Group — photography hobbyists (including the driver and a Department of Tourism accredited tourist guide here in the province of Cebu, Philippines) — on a road trip that will forever change my photographic / travel perspectives. (Why dream of world tours, when you haven’t discovered your country yet?)

This is the town of Boljoon (bull-who-on), 103 kms south of Cebu City, famous for its United Nations World Heritage Site architectural landmarks.

To fully appreciate the photographic spectrum of this visual interestingness, View / Download it in 1200 x 1050 size. Remember! Flickr Community Guidelines specify that if you post a Flickr photo on an external website, the photo must link back to its photo page. (So, use Option 1.)

An excerpt from the Freeman Magazine, July 31, 1993:

The name Boljoon is coined from the word “Boljo”, which literally means an “abrupt jut, a promontory or projection towards the sea.”

It was founded in 1692 by the missionaries to spread the Christian religion. It consists of five barrios – excluding the poblacion or town proper. The poblacion is nestled cozily in a narrow coastal plain bounded by towering and precipitous cliffs on the north, hemmed on the western side by a range of luxuriant hills, pierced by the Boljoon River and fringed by the Bohol Strait on the East.

It is reminiscent of Gibraltar, the high rocky cliffs forming an impressive backdrop to the simple dwellings of these hardy Boljoanons. This gigantic wall-like structure called Eli is found at the northern portion of the poblacion. It served as a natural barrier against the Spanish invaders, just like Gibraltar.

Right on top of Eli still stands a solitary watch tower that is now covered with moss, fern and thick undergrowth like a faithful sentinel on a never-ending vigil. It is a favorite spot among nature lovers and just plain lovers, basking under the dreamy moonlight. Many a ladies’ heart were won on Eli and on particularly silent nights the wind carries their giggles.

There is not much to see or go to in Boljoon. It takes a keen artist eye and a poet’s heart to really appreciate the place (the original photo of this visual artistry was taken under the sweltering heat of the 2pm sun, but I’ve thrown in and juxtaposed a lot of midnight details to highlight the romantic mood I had in mind [italics mine]). The old catholic Church is worth a look. One of the oldest in the province, this church boasts of a huge mural painting on its ceiling, old santos and a huge cross of Christ hanging by the altar. Its patron saint is Patrocinio de Maria.

THE “LOVER’S LANE”

There still stands a belfry constructed during the Spanish era. It has the distinction of being separated from the church and has a beautiful architectural design. It still carries the original bells installed by the Spaniards.

There’s this one place in barangay Granada which they call the “Lover’s Lane”, close to the waters and is composed of several cave-like openings. This is where the kids usually hang out and make out.

It wouldn’t come as a surprise if Boljoon’s mayor turns out to be a poet, and a very good one at that. His name is the late Dr. Rene Estella Amper.

Here’s what the poet/mayor has to say of his hometown in one of his early writings:

THE ROCK (an excerpt)

Lime-white, looming white, gigantic: the rock squats like an echo of the greener pastures of our forefathers. Hewn out of the immemorial romance of the land and the sea, billions of years ago, it has outlasted the quivering flesh of man, having been purified by storms, having tasted the dusts of wanton uncare.

This rock, its bigness remote, its whiteness primeval bears the scars of the dreams and fulfillment of our brown brothers.

This rock tells its story to the willow-winds; it has an irresistibility to these ghostly wanderers that suck the women’s skirts and stir the water holes. And the winds giggle.

www.facebook.com/cleeandrophotographer
creative digital photography

Posted by C L E E ٩(̾●̮̮̃̾•̃̾)۶ ™ on 2008-10-23 02:42:26

Tagged: , cebu , cebu city , boljoon , heritage site , united , nations , cebuphotography , travel photography , cinematic photography , photographic , heritage , photographers cebu , landmarks cebu , historical , spots philippine , site , coastal , waters , sea , oceans , skies , clouds , scapes , art , eli , watch , plains , ruins , stone , old , ancient , clee villasor , tower , world , landmarks , cebu-sugbo , waterscape , skyscape , landscape , landscape photography , visual artistry , shadows , highlights , cloudy , midnight , dark , atmospheric , painting , photographic painting , historical spots , philippine historical spots , philippine photographers , digital imagery , digital imageer , photography , saturation , hdr , visual impact , creative photo , artistry , atmospheric painting , photographic impact , photographers , cebu photographers , cebu photography clubs , a vision , camera club , tutorials , photoshop , GoldenGlobe , Team Pilipinas