Die Ernte / The Harvest

Die Ernte / The Harvest

Ein Mähdrescher ist eine landwirtschaftliche Erntemaschine zur Ernte von Körnerfrüchten wie insbesondere Getreide, aber auch Raps, Sonnenblumen, Ackerbohnen, Grassamen oder Ähnlichem. Wie die zusammengesetzte Bezeichnung (vgl. auch im Englischen: combine harvester) andeutet, kann der Mähdrescher mehrere Verfahrensschritte in einem Arbeitsgang erledigen, insbesondere die Mahd und den Drusch der Körnerfrüchte.

Vorne am Mähdrescher ist das Schneidwerk oder ein Erntevorsatz angebaut. Diese nehmen das Erntegut vom Feld auf, ein Schneidwerk übernimmt überdies die Aufgabe des Mähens. Je nach Art der Druschfrüchte kommen verschiedene Schneidwerke zum Einsatz.

Da heutige Arbeitsbreiten die auf öffentlichen Straßen maximal zulässige Breite von drei bis dreieinhalb Meter meist übersteigen (Arbeitsbreiten von fast 14 Meter für Getreide und 12 Meter für Mais sind möglich), kann das Schneidwerk für Straßenfahrt entweder abgebaut oder (hydraulisch) zusammengeklappt werden. Das abgebaute Schneidwerk wird mit einem Schneidwerkswagen transportiert, welcher entweder vom Mähdrescher selbst oder einem anderen Zugfahrzeug gezogen wird.

Ein Schneidwerk besteht aus dem Schneidtisch sowie Halmteilern, welche die Getreidehalme der zu mähenden Bahn von dem noch stehen bleibenden Getreide abteilen, ggfls. Ährenhebern, welche liegende Getreidehalme (Lagergetreide) unterfahren und aufrichten sollen, der der Zuführung der Getreidehalme zum Mähwerk dienenden Haspel[1], dem Fingermähwerk und der Einzugsschnecke bzw. dem Förderband, welche das Schnittgut dem Dreschwerk zuführen.
Bei der Ernte von Raps werden zur Trennung der Schnittbahnen an den Seiten des Schneidwerkes seitlich senkrecht stehende Scherenschnittmesser angebaut und der Schneidtisch wird verlängert. Raps fällt sehr leicht aus den Samenständen heraus, und die sich verzweigenden Einzelpflanzen verhaken sich miteinander. Durch ein Auseinanderreißen der untereinander verworrenen Rapspflanzen würde es zu erheblichen Kornverlusten kommen. Die Verlängerung fängt die Samen auf, die von der Haspel ausgeschlagen werden.

Maispflücker oder Maisgebisse sind so konzipiert, dass die Pflanzenstängel bei der Überfahrt durch einen schmal zulaufenden Spalt gezogen und nur die dabei abgepflückten Kolben dem Dreschwerk zugeführt werden, während ein unter dem Tisch angebrachtes Häckselwerk die Reste zerkleinert. Für Getreide gibt es außerdem Ährenstripper oder auch nur Stripper genannt. Diese arbeiten nach demselben Prinzip wie Maispflücker. Von Vorteil ist, dass das Stroh nicht durch die Maschine muss, und sich somit die Stundenleistung des Mähdreschers erhöht.

Beim Drusch von Sonnenblumen werden die Blütenstände vom Stängel getrennt. Vom Aufbau ähneln Sonnenblumenschneidwerke den Maisschneidwerken.

Bei ungleichmäßig abreifenden Beständen wird die Frucht zunächst mit einem Schwadmäher abgemäht und auf Schwad abgelegt. Nach weiterem Abreifen der Frucht im Schwad nimmt der Mähdrescher diese mit einer Pick-Up zum Drusch auf.

Der Schrägförderer trägt den Erntevorsatz. Innen läuft eine Einzugskette, die das Erntegut von der Einzugsschnecke übernimmt und es dem Dreschaggregat zuführt.

Unmittelbar am Ende des Schrägförderers befindet sich eine Steinfangmulde. Die Dreschtrommel soll die schwereren Steine dort hineindrücken. Da Rotormähdrescher besonders empfindlich auf eingezogene Steine reagieren, gibt es Systeme, bei dem die Steine durch Klopfsensoren erkannt werden und sich bei Steinerkennung der Boden des Schrägförderers öffnet, so dass der Stein wieder auf den Boden gelangen kann.
Das Dreschorgan besteht aus einem Dreschkorb, in dem sich entweder eine Dreschtrommel oder ein Rotor mit hoher Geschwindigkeit drehen. Der Spalt zwischen Trommel/Rotor und Korb ist sehr eng. So wird das Korn aus dem Stroh ausgerieben und fällt durch die Maschen des Korbes. Etwa 90 % der Körner werden durch das Dreschaggregat vom Stroh getrennt und gelangen direkt in die Reinigung, lediglich das Stroh und darin noch enthaltenes Restkorn gelangen zur Abscheidung. Je nach Art der zu dreschenden Frucht kann über die Variation der Trommeldrehzahl und eine Veränderung des Dreschspaltes zwischen Dreschtrommel und Dreschkorb die Intensität des Druschs variiert werden.

Noch intensiver dreschen kann man durch verschließen der ersten Korbreihen, oder durch den Einbau von Reibleisten. Das ist notwendig, wenn Grannen von Gerstenkörnern abgebrochen werden sollen oder wenn Früchte gedroschen werden, bei denen die Samen sehr fest in den Blütenständen sitzen. Die Abscheidefläche des Korbes verringert sich dabei.

Vom Dreschaggregat gelangt das Erntegut zur Abscheidung, wo die restlichen Körner und nicht vollständig ausgedroschene Ähren vom Stroh getrennt werden. Die Abscheidung erfolgt meist über einen sogenannten Hordenschüttler. Dieser besteht aus mehreren versetzt an einer Kurbelwelle befestigten ca. 20 cm breiten sägezahnförmigen Rinnen, über die das Gut aufgrund der Schüttelbewegung nach hinten wandert, wobei das leichtere und sehr viel größere Stroh den ansteigend verlaufenden Schüttlern folgt. Die Körner und nicht vollständig ausgedroschene Ähren werden vom Stroh getrennt und fallen durch kleine Löcher in den Horden auf das Reinigungssieb. Bei axialen Abscheideorganen erfolgt die Abscheidung an einem oder zwei Rotoren, deren Funktionsweise einem Separator ähnelt. Unterhalb der Rotoren ist ein Korb (ähnlich dem Dreschkorb) angebracht, der das Stroh führt, bis es vom Rotor nach hinten aus dem Mähdrescher oder auf den Häcksler gelangt.

Das Reinigungsgut, bestehend aus Körnern und NKB (Nicht-Korn-Bestandteile = Spreu und Strohteile), gelangt vom Dreschwerk und weiteren Abscheideorganen (Schüttler oder Abscheiderotoren) zur Reinigung. Die Reinigung dieses Gemisches erfolgt in der Regel über zwei übereinander angeordnete Siebe, das Ober- und das Untersieb. Die Zuführung des Reinigungsgutes zu den Sieben erfolgt je nach Hersteller unterschiedlich:
a) Über einen Stufenboden (treppenförmiges Profilblech), der sowohl für die Förderung, als auch für eine gleichmäßige Verteilung in Längs- und Querrichtung und eine gewisse Vorentmischung zuständig ist. b) Über eine aktive Förderung mittels mehreren nebeneinander liegenden Schnecken, deren Hauptaufgabe darin besteht, innerhalb der Reinigung an Höhe zu gewinnen und das Reinigungsgut gleichmäßig den Sieben zuzuführen. c) Eine oder mehrere, mit Hilfe eines Gebläses, belüftete Fallstufen, die bereits vor Erreichen der Siebe einen großen Anteil der leichten Spreuanteile aus dem Reinigungsgut ausblasen. Damit wird vor allem erreicht, dass die Körner unter den NKB auf die Siebfläche auftreffen und zügig abgeschieden werden.

Beide Siebe werden von unten durch einen Luftstrom (Wind) belüftet. Dies sorgt für eine Auflockerung des Reinigungsgutes, wobei im günstigsten Fall eine so genannte Wirbelschichtphase entsteht. Dabei "schwimmen" leichte Anteile wie die Spreu und Kurzstroh auf und ermöglichen den wesentlich schwereren Körnern das Erreichen der Siebfläche.

Das Reinigungsgut gelangt von der Zuführung aus zunächst auf das Obersieb. Dieses hat im Wesentlichen die Aufgabe, Körner und unausgedroschene Ährenteile (Überkehr) zum Untersieb abzuscheiden und die NKB über das Siebende aus dem Mähdrescher zu fördern. Das Untersieb stellt die letzte Reinigungsstufe dar, wobei im Idealfall eine Kornreinheit von über 99,6 % erreicht wird. Das Reinkorn wird über eine Schnecke zu einer Maschinenseite (in der Regel in Fahrtrichtung rechts) und von dort mittels eines Elevators in den Korntank gefördert. Der Siebübergang des Untersiebes (Überkehr) besteht aus unausgedroschenen Ährenteilen, Körnern und Spreu. Diese Überkehr wird mit einer Schnecke zu einer oder beiden Seiten des Mähdreschers gefördert und von dort mit Hilfe einer weiteren Schnecke oder eines Elevators zum Dreschwerk oder den Förderelementen der Reinigung zurückgefördert. Hersteller, die die Überkehr zur Reinigung zurückführen, bauen auf dem Weg dorthin ein zusätzliches kleines Dreschorgan ein.

Da mit den NKB auch große Mengen an Unkrautsamen aus dem Mähdrescher gelangen, wird die Spreu ebenso wie das Stroh (sofern gehäckselt) bei Schnittbreiten über 3 Meter möglichst über die gesamte Arbeitsbreite verteilt, beispielsweise mittels scheibenförmiger Spreuverteiler. Durch Wechsel von Ober- und Untersiebbauarten sowie durch Variation der Windgeschwindigkeiten kann die Reinigung auf die zu dreschende Getreideart eingestellt werden. Sowohl die Frequenz als auch die Amplitude der Siebschwingung werden meist vom Hersteller vorgegeben und können nur mit großem Umbauaufwand geändert werden.

Der Getreidetank dient als Vorratsbehälter für das Korn und wird, oftmals auch parallel zum Drusch, über das Abtankrohr auf einen Transportanhänger oder einen Überladewagen entladen. Das Fassungsvermögen des Korntankes beträgt je nach Größe des Mähdreschers zwischen 5 und 12 Kubikmetern. Er ist im Allgemeinen so bemessen, dass im Getreide 15-30 min lang ohne Entleerung des Tanks gedroschen werden kann.

Am hinteren Ende des Mähdreschers, hinter den Dresch- und Abscheideorganen, wird das gedroschene Stroh aus dem Mähdrescher ausgeworfen. Das Stroh kann entweder zur späteren Bergung mit einer Ballenpresse auf Schwad gelegt oder gehäckselt werden. Zur Schwadablage verfügen Mähdrescher vielfach über Leitbleche oder Zinken, mit denen sich die Schwadbreite verstellen lässt, um diese auf die Presse anzupassen. Häufig ist bei neueren Maschinen ein Strohhäcksler montiert, der das gedroschene Stroh klein häckselt und es über die gesamte Schnittbreite verteilt. Das gehäckselte Stroh kann später in den Boden eingearbeitet werden und trägt so zur Erhöhung des Humusanteils bei. Bei immer größeren Schnittbreiten stellt eine gleichmäßige Strohverteilung heute eine große Herausforderung für die Hersteller dar.

Mit einer Nennleistung von 435 Kilowatt (591 PS) gilt der New Holland CR 9090[3] derzeit als der Mähdrescher mit der höchsten Motorleistung. Moderne Mähdrescher benötigen die Leistung vor allem für das Dreschaggregat, die Abscheideorgane und den Strohhäcksler. Abhängig von den Erntebedingungen und der Arbeitsbreite verbraucht alleine der Häcksler bis zu 20 % der verfügbaren Leistung. Da während des Dreschens sehr viel Staub entsteht, ist die Zuführung der Verbrennungs- und Kühlluft des Motors problembehaftet. Luftfilter und Kühler müssen daher durch maschinelle Einrichtungen sauber gehalten werden, was entweder mittels einer Absaugung, rotierender Bürsten oder durch ein Lüfterwendegetriebe geschieht. Das Wendegetriebe verändert die Drehrichtung des Kühlerventilators ab einer bestimmten Temperatur, so dass dieser den Kühler frei bläst.

Die ganze Maschine sitzt auf einem Fahrwerk, das von zwei großen und breiten Rädern (oft mehr als 80 cm breit) direkt hinter dem Schneidwerk und unterhalb der Kabine dominiert wird. Gelenkt wird über die hinteren, kleineren Räder. Beim Einsatz in schwierigem Gelände kommen Allradantriebe und auch vermehrt Raupenlaufwerke zum Einsatz, deren Vorteile zum einen in einer geringeren Bodenverdichtung und zum anderen in einer höheren Laufruhe der Maschine liegen, die besonders bei sehr breiten Schneidwerken von Bedeutung ist. Durch die Auslegung eines Mähdreschers als Hecklenker kann mit dem unmittelbar vor der Vorderachse montierten Schneidwerk ein sehr enger Wendekreis erreicht werden.

Da die optimale Fahrgeschwindigkeit beim Dreschen von vielen Faktoren abhängt (Motorleistung, Dreschverluste, Bestandsdichte, Lagergetreide, Bodenunebenheiten, etc.), ist es wichtig, dass die Geschwindigkeit des Mähdreschers stufenlos verändert werden kann. Dazu dienen meist Variator- oder hydrostatische Getriebe.

Anstelle des bei frühen Mähdreschern gängigen offenen Fahrerplatzes direkt hinter dem Schneidwerk und über dem Schrägförderer mit erheblicher Staub-, Lärm- und bei entsprechender Witterung Hitzebelastung des Maschinenführers ist bei modernen Mähdreschern fast ausnahmslos an gleicher Stelle eine geschlossene Fahrerkabine aufgebaut. Diese erlaubt einen wirksamen Schutz des Fahrers vor Staub, Lärm und Hitze und ist daher in der Regel klimatisiert und komfortabel für einen langen Arbeitstag (meist zwischen 10 und 14 Stunden) ausgeführt. Sie enthält auch die elektronischen Steuerungen und Anzeigen zur Einstellung und Überwachung aller relevanten Parameter des Mähdreschers (Motoranzeigen, Steuerung des Schneidwerks und des Dreschwerks, immer öfter Instrumente zur Ertragsmessung, teilweise kombiniert mit GPS-Erfassungssystemen).

Die Steuerung des Schneidwerks, des Abtankrohrs und der Fahrgeschwindigkeit wird mit einem Hebel durchgeführt, welcher ständig in der rechten Hand des Fahrers geführt wird (die linke Hand liegt am Lenkradknauf). Bei modernen Mähdreschern ist dies ein Joystick, der die Elektronik ansteuert. In älteren Modellen ist ein Hebel mit den Hydrauliksteuergeräten mechanisch verbunden. Durch Wahl der Hebelgasse wird die Funktion des Steuergeräts (Schneidwerkshöhe, Abstand Haspel/Schneidwerkstisch, Fahrgeschwindigkeit) gewählt. Weitere Hebelgassen können beispielsweise für Haspelgeschwindigkeit oder Dreschtrommeldrehzahl vorhanden sein, sind meist aber erst nach Lösen einer Sicherung zugänglich, um versehentliches Verstellen zu verhindern.

In den letzten Jahren werden vermehrt Steuerungs- und Kontrollaufgaben, die früher durch den Fahrer ausgeführt wurden, von automatisierten Einrichtungen übernommen. So wird beispielsweise das Schneidwerk auf einer vom Fahrer vorgegebenen Schnitthöhe automatisch den Geländeunebenheiten nachgeführt. Sensoren erfassen die Bodenunebenheiten, entsprechend der Sensordaten verändert die automatisierte Steuerung sodann Arbeitshöhe sowie Neigung des Schneidwerks. Ein weiterer Automatisierungsschritt sind selbsttätige Lenksysteme. Durch DGPS kann die Position des Mähdreschers auf dem Feld mit einer Genauigkeit von ± 10 cm bestimmt werden. Mit diesen Informationen führt der Bordcomputer den Mähdrescher parallel entlang der vorherigen Fahrspur über das Feld. Der Fahrer braucht das Steuer nur noch am Ende des Feldes in die Hände zu nehmen, um die Maschine zu wenden. Des Weiteren gibt es Systeme, die mit Sensoren die Menge des Dreschgutes messen und die Geschwindigkeit des Mähdreschers so anpassen, dass dieser immer mit optimaler Auslastung fährt.

Bis zur Mechanisierung der Landwirtschaft wurde Getreide manuell in mehreren Arbeitsschritten geerntet. Zuerst mähte man das Getreide mit Sichel, Sichte oder Sense ab und band es in der Regel zu Garben die man dann zunächst auf dem Feld stehen ließ. Diese Mahd erfolgte bereits vor der beim Mähdrusch erforderlichen Totreife des Getreides, das auf dem Feld in Garben aufgestellte Erntegut konnte auf diesem noch nachreifen und trocknen, sodass bei der Mahd weder Korn noch Stroh die notwendige Trockenheit zur Endlagerung haben mussten. In der Regel transportierte man die Garben sodann zum Bauernhof, dort wurde das Getreide, oft nach weiterer Lagerung in der Scheune auf der Tenne mit Dreschflegeln ausgedroschen. Anschließend reinigte man es durch sieben oder worfeln von der Spreu und Verunreinigungen wie Erde oder Unkrautsamen. Beim Worfeln wurden leichte Bestandteile des hochgeworfenen Druschguts wie die Spreu vom Wind weggeweht. Später wurden hierzu einfache handbetriebene Windfegen verwendet, bei denen ein Siebkasten das Getreide in einen darunter angebrachten Windkasten rieseln ließ; diese Windsichtung ist bis heute Bestandteil der Reinigungsstufe von Mähdreschern.

Mit der einsetzenden Mechanisierung wurden etwa ab 1786 zunächst stationäre Dreschmaschinen entwickelt, die Anfangs nur per Hand oder über Göpel durch Tiere angetrieben wurden. Später wurden Dampfmaschinen, Verbrennungsmotoren, Elektromotoren und andere Antriebe eingesetzt. Die erste Mähmaschine für Getreide wurde 1826 von dem schottischen Geistlichen Reverend Patrick Bell entwickelt. Mit der Erfindung des mechanischen Knoters 1857 wurde es möglich, Mähbinder zu bauen, die das Getreide vollmechanisiert zu Garben banden. Zunächst wurden diese Maschinen von Pferden gezogen und dabei über die Maschinenräder angetrieben. Mit Erscheinen brauchbarer Traktoren nutze man zunächst auch diese anstelle von Pferden zum Zug. Erst 1927 produzierte Krupp einen ersten Mähbinder, der unmittelbar über eine Zapfwelle vom Motor des Traktors angetrieben wurde.[4]

Aus der Kombination von Mähmaschine und fahrbarer Dreschmaschine entstanden die ebenfalls mobilen Mähdrescher. Bereits 1834 demonstrierten Hiram Moore und James Hascall in Michigan eine Maschine, die sowohl mähen und dreschen als auch reinigen konnte, die Arbeitsbreite betrug 4,60 Meter.[5] 1836 wurde ihre Maschine patentiert. Bis zu 40 Maultiere oder Pferde waren erforderlich, um diese Maschinen zu ziehen. Der Antrieb der Dresch- und Reinigungsorgane fand über eines der Räder statt. George Stockton Berry baute 1886 den ersten selbstfahrenden Mähdrescher, der von einer Dampfmaschine angetrieben wurde. Der Kessel wurde mit dem ausgedroschenen Stroh befeuert und versorgte auch den separaten Antrieb der Dreschorgane mit Dampf.[6] 1911 verwendete die Holt Manufacturing Company in Stockton, Kalifornien erstmal Verbrennungsmotoren auf Mähdreschern, diese trieben jedoch nur Dresch-, Abscheide- und Reinigungssystem an, und dienten noch nicht als Fahrantrieb.

Der erste selbstfahrende Mähdrescher eines deutschen Herstellers war der MD 1 der Maschinenfabrik Fahr, er wurde auf der DLG-Ausstellung in Hamburg im Jahr 1951 erstmals der Landwirtschaft präsentiert. Ein erster Rotormähdrescher wurde von New Holland im Jahr 1975 auf den Markt gebracht.
Bei der Abscheidung unterscheidet man zwischen zwei grundsätzlich verschiedenen Arten von Abscheideorganen.

Hordenschüttler: Bei herkömmlichen Mähdreschern erfolgt die Abscheidung über einen Hordenschüttler. Der Schüttler besteht aus vier bis sechs Horden, auf deren Oberseite widerhakenförmige Zacken angebracht sind. Alle Horden sind an zwei Kurbelwellen befestigt, die sich drehen. Es ergibt sich eine kreisförmige Exzenterbewegung der Horde: zuerst nach oben, dann nach hinten, dann nach unten, dann nach vorne. Wenn eine Horde am obersten Punkt ist, sind die daneben liegenden Horden am tiefsten. Auf dem Weg nach oben übernehmen die Horden so die Strohmatte von den daneben liegenden und führen sie mit den Widerhaken nach hinten. Bei der Abwärtsbewegung geben sie die Matte wieder an die daneben liegenden Horden ab. Leer laufen sie wieder in Fahrtrichtung nach vorne.
Dadurch wird das Stroh so aufgeworfen, dass die noch mitgeführten Körner durch die Strohmatte hindurchfallen. Unter jeder Horde ist eine Wanne auf der die Körner schräg nach vorne auf den Vorbereitungsboden laufen.
Der Schüttler ist jenes Abscheidesystem, welches das Stroh am wenigsten beansprucht und zerstört. Bei feuchtem oder unreifem Stroh sinkt die Abscheideleistung schnell. Bei der Fahrt bergauf steigen die Verluste ebenfalls, weil die Hangneigung der Schüttlerneigung entgegensteht. Am Seitenhang ist begrenzt die Horde an der Hangunterseite die Abscheideleistung. Unter diesen Bedingungen muss die Fahrgeschwindigkeit reduziert werden.
Axiale Abscheideelemente: Mähdrescher mit sehr breiten Schneidwerken werden darum mit axialen Abscheideelementen gebaut. Ein oder zwei (dann nebeneinander angeordnete) axiale Rotoren übernehmen die Aufgabe der Abscheidung. Durch die Fliehkräfte werden Korn und Stroh voneinander getrennt. Elemente aus einer Korbstruktur, die den Rotor mindestens unterhalb umschließen, verhindern, dass zu viele Nichtkornbestandteile auf die Reinigung gelangen und somit deren Funktionsfähigkeit einschränken. Bei axialen Systemen passiert das Stroh die Abscheidung rund zehnmal schneller als bei Schüttlersystemen. Daher sind größere Durchsätze möglich und vor allem bei feuchten Erntebedingungen ist der Kornverlust erheblich geringer. Axialmähdrescher sind zudem weniger anfällig gegen starke Hangneigungen, da hier die Schwerkraft weniger Bedeutung für die Abscheidung hat.

Getreide wird in aller Regel auf ebenen Flächen angebaut. Es gibt jedoch Regionen, wo auch in sanft hügeligen bis zum Teil recht steilen Topografien Druschfrüchte angebaut werden. Wie oben beschrieben, wird der Drusch- und Trennprozess in Mähdreschern sehr stark von der Topografie oder eben der Schwerkraft beeinflusst. Bereits die durch die Hangneigung einseitige Beschickung des Dreschwerkes reduziert die Leistungsfähigkeit der Maschine enorm, da nicht die ganze Dreschwerksbreite genutzt wird. Schlimmer jedoch ist die einseitige Beschickung der Reinigungsanlage (Vorbereitungsboden, Siebe) mit dem ausgedroschenen Gut. Spreu und Korn erreichen die Reinigungsanlage auf der hangabwärts liegenden Seite, darüber hinaus wird durch die Siebbewegung das Material weiter einseitig konzentriert.

Die Leistungseinbuße steigt exponentiell mit der Hangneigung. Es ist also von großem Interesse, die Hangneigung resp. diese Leistungseinbuße zu kompensieren. Dazu existieren verschiedene Systeme.
Ältestes Verfahren, das heute vor allem bei extremen Hanglagen noch immer angewandt wird, ist, dass das Fahrwerk so angehoben oder abgesenkt wird, dass die Dreschorgange waagerecht liegen. Der erste Mähdrescher mit einem Hangausgleich nach diesem Prinzip wurde 1891 von den Gebrüdern Holt in Kalifornien gebaut.[8] Der Hangausgleich musste bei früheren Maschinen mechanisch eingestellt werden, wofür eine zweite Person auf dem Mähdrescher notwendig war. Der erste automatische Hangausgleich wurde 1941 von Raymond A. Hanson entwickelt. 1945 stattete er die ersten Maschinen mit diesem System aus, bei dem der Grad der Neigung über Quecksilberschalter ermittelt wurde, und die Abscheideorgane über pneumatische Zylinder entsprechend ausgerichtet wurden.[9]

Heute geschieht der Ausgleich in der Regel mittels zweier Hydraulikzylinder, die den Mähdrescher einseitig von der Vorderachse abheben und somit waagerecht halten. Da die Hinterachse pendelnd gelagert ist, ist hier kein Neigungsausgleich erforderlich. Seltener ermöglicht eine Hubhydraulik an der Hinterachse auch einen Neigungsausgleich in Längsrichtung.

Problematisch ist hier der technische Aufwand und die damit verbundenen Kosten. Auch die Gutübergabe vom schrägen Schneidwerk auf den geraden Mähdrescher ist problematisch. Dieses System bietet jedoch den Vorteil, dass das komplette Fahrzeug mit Ausnahme des Schneidwerks in der Waagerechten gehalten wird. Somit wird die Leistung der Reinigungsorgane nicht durch die Seitenlage beeinträchtigt. Auch kann so das Volumen des Korntanks voll ausgenutzt werden, was nicht möglich ist, wenn das Fahrzeug zur Seite geneigt ist, da das Erntegut zu dieser Seite verrutschen würde, was in extremen Fällen sogar ein Umkippen des Fahrzeugs zur Folge haben kann. Darüber hinaus erhöht sich der Fahrkomfort, da auch der Fahrer in einer geraden Sitzposition verbleibt, und nicht aus dem Sitz zu rutschen droht.

Die in den letzten Jahren in vielen Bereichen stattfindende Unternehmenskonzentration ist auch auf dem Agrar-Sektor zu beobachten. Bei Mähdreschern tragen zusätzlich die hohen technologischen Anforderungen sowie die kapitalintensive Produktion dazu bei, dass viele früher eigenständige Unternehmen heute in einem Dachkonzern vereinigt sind. Dabei werden etablierte Markennamen teilweise nebeneinander beibehalten oder – etwa regional oder im Produktspektrum – differenziert. Während weniger bekannte oder angesehene Marken aufgegeben werden, können Unternehmen mit hochwertigem Image bisher nicht vorhandene Produktlinien unter eigenem Namen von Konzernschwestern übernehmen.

John Deere ist Weltmarktführer bei Landmaschinen.
Claas ist europäischer Marktführer für Mähdrescher.
Im CNH Global-Konzern, weltweit an zweiter Stelle der Landmaschinenproduzenten, ging unter anderem die DDR-Marke Fortschritt auf, heutige Marken sind
Case IH und
New Holland.
Die 1990 entstandene AGCO (Allis-Gleaner Corporation) vereinigte einige bekannte Marken:
Gleaner war von Beginn an der Markenname für Erntemaschinen.
Massey Ferguson wurde 1994 übernommen.
Fendt kam 1997 zum Konzern und bietet seit 1999 Mähdrescher unter eigenem Namen an.
Laverda ist seit 2010 im hundertprozentigen Konzernbesitz.
Deutz-Fahr ist das Nachfolgeunternehmen des ersten deutschen Produzenten.
Rostselmasch ist ein russischer Hersteller von u.a. Mähdreschern.
Sampo Rosenlew ist ein finnischer Hersteller von u.a. Mähdreschern.
Parzellendrescher für das Versuchswesen stellen die Firmen Zürn Harvesting [10] und Wintersteiger her.

The combine harvester, or simply combine, is a machine that harvests grain crops. The name derives from its combining three separate operations comprising harvesting—reaping, threshing, and winnowing—into a single process. Among the crops harvested with a combine are wheat, oats, rye, barley, corn (maize), soybeans and flax (linseed). The waste straw left behind on the field is the remaining dried stems and leaves of the crop with limited nutrients which is either chopped and spread on the field or baled for feed and bedding for livestock.

Combine harvesters are one of the most economically important labor saving inventions, enabling a small fraction of the population to be engaged in agriculture.

Scottish inventor Patrick Bell invented the reaper in 1826. The combine was invented in the United States by Hiram Moore in 1834, and early versions were pulled by horse or mule teams.[2] In 1835, Moore built a full-scale version and by 1839, over 50 acres of crops were harvested.[3] By 1860, combine harvesters with a cutting width of several metres were used on American farms.[4] In 1882, the Australian Hugh Victor McKay had a similar idea and developed the first commercial combine harvester in 1885, the Sunshine Harvester.[5]

Combines, some of them quite large, were drawn by mule or horse teams and used a bullwheel to provide power. Later, steam power was used, and George Stockton Berry integrated the combine with a steam engine using straw to heat the boiler.[6]Tractor-drawn, combines became common after World War II as many farms began to use tractors. These combines used a shaker to separate the grain from the chaff and straw-walkers (grates with small teeth on an eccentric shaft) to eject the straw while retaining the grain. Early tractor-drawn combines were usually powered by a separate gasoline engine, while later models were PTO-powered. These machines either put the harvested crop into bags that were then loaded onto a wagon or truck, or had a small bin that stored the grain until it was transferred to a truck or wagon with an auger.

In the U.S., Allis-Chalmers, Massey-Harris, International Harvester, Gleaner Manufacturing Company, John Deere, and Minneapolis Moline are past or present major combine producers.

In 1911, the Holt Manufacturing Company of California produced a self-propelled harvester.[7] In Australia in 1923, the patented Sunshine Auto Header was one of the first center-feeding self-propelled harvesters.[8] In 1923 in Kansas, the Curtis brothers and their Gleaner Manufacturing Company patented a self-propelled harvester which included several other modern improvements in grain handling.[9] Both the Gleaner and the Sunshine used Fordson engines. In 1929 Alfredo Rotania of Argentina patented a self-propelled harvester.[10] In 1937, the Australian-born Thomas Carroll, working for Massey-Harris in Canada, perfected a self-propelled model and in 1940 a lighter-weight model began to be marketed widely by the company.[11] Lyle Yost invented an auger that would lift grain out of a combine in 1947, making unloading grain much easier.[12]

In 1952 Claeys launched the first self- propelled combine harvester in Europe;[13] in 1953, the European manufacturer CLAAS developed a self-propelled combine harvester named ‘Herkules’, it could harvest up to 5 tons of wheat a day.[14] This newer kind of combine is still in use and is powered by diesel or gasoline engines. Until the self-cleaning rotary screen was invented in the mid-1960s combine engines suffered from overheating as the chaff spewed out when harvesting small grains would clog radiators, blocking the airflow needed for cooling.

A significant advance in the design of combines was the rotary design. The grain is initially stripped from the stalk by passing along a helical rotor instead of passing between rasp bars on the outside of a cylinder and a concave. Rotary combines were first introduced by Sperry-New Holland in 1975.[15]

In about the 1980s on-board electronics were introduced to measure threshing efficiency. This new instrumentation allowed operators to get better grain yields by optimizing ground speed and other operating parameters.

Combines are equipped with removable heads that are designed for particular crops. The standard header, sometimes called a grain platform, is equipped with a reciprocating knife cutter bar, and features a revolving reel with metal or plastic teeth to cause the cut crop to fall into the auger once it is cut. A variation of the platform, a "flex" platform, is similar but has a cutter bar that can flex over contours and ridges to cut soybeans that have pods close to the ground. A flex head can cut soybeans as well as cereal crops, while a rigid platform is generally used only in cereal grains.

Some wheat headers, called "draper" headers, use a fabric or rubber apron instead of a cross auger. Draper headers allow faster feeding than cross augers, leading to higher throughputs due to lower power requirements. On many farms, platform headers are used to cut wheat, instead of separate wheat headers, so as to reduce overall costs.

Dummy heads or pick-up headers feature spring-tined pickups, usually attached to a heavy rubber belt. They are used for crops that have already been cut and placed in windrows or swaths. This is particularly useful in northern climates such as western Canada where swathing kills weeds resulting in a faster dry down.

While a grain platform can be used for corn, a specialized corn head is ordinarily used instead. The corn head is equipped with snap rolls that strip the stalk and leaf away from the ear, so that only the ear (and husk) enter the throat. This improves efficiency dramatically since so much less material must go through the cylinder. The corn head can be recognized by the presence of points between each row.

Occasionally rowcrop heads are seen that function like a grain platform, but have points between rows like a corn head. These are used to reduce the amount of weed seed picked up when harvesting small grains.

Self-propelled Gleaner combines could be fitted with special tracks instead of tires or tires with tread measuring almost 10in deep to assist in harvesting rice. Some combines, particularly pull type, have tires with a diamond tread which prevents sinking in mud. These tracks can fit other combines by having adapter plates made.

The cut crop is carried up the feeder throat (commonly called the "feederhouse") by a chain and flight elevator, then fed into the threshing mechanism of the combine, consisting of a rotating threshing drum (commonly called the "cylinder"), to which grooved steel bars (rasp bars) are bolted. The rasp bars thresh or separate the grains and chaff from the straw through the action of the cylinder against the concave, a shaped "half drum", also fitted with steel bars and a meshed grill, through which grain, chaff and smaller debris may fall, whereas the straw, being too long, is carried through onto the straw walkers. This action is also allowed due to the fact that the grain is heavier than the straw, which causes it to fall rather than "float" across from the cylinder/concave to the walkers. The drum speed is variably adjustable on most machines, whilst the distance between the drum and concave is finely adjustable fore, aft and together, to achieve optimum separation and output. Manually engaged disawning plates are usually fitted to the concave. These provide extra friction to remove the awns from barley crops. After the primary separation at the cylinder, the clean grain falls through the concave and to the shoe, which contains the chaffer and sieves. The shoe is common to both conventional combines and rotary combines.

In the Palouse region of the Pacific Northwest of the United States the combine is retrofitted with a hydraulic hillside leveling system. This allows the combine to harvest the steep but fertile soil in the region. Hillsides can be as steep as a 50% slope. Gleaner, IH and Case IH, John Deere, and others all have made combines with this hillside leveling system, and local machine shops have fabricated them as an aftermarket add-on.

The first leveling technology was developed by Holt Co., a California firm, in 1891.[16] Modern leveling came into being with the invention and patent of a level sensitive mercury switch system invented by Raymond Alvah Hanson in 1946.[17] Raymond’s son, Raymond, Jr., produced leveling systems exclusively for John Deere combines until 1995 as R. A. Hanson Company, Inc. In 1995, his son, Richard, purchased the company from his father and renamed it RAHCO International, Inc. In March 2011, the company was renamed Hanson Worldwide, LLC.[18] Production continues to this day.

Hillside leveling has several advantages. Primary among them is an increased threshing efficiency on hillsides. Without leveling, grain and chaff slide to one side of separator and come through the machine in a large ball rather than being separated, dumping large amounts of grain on the ground. By keeping the machinery level, the straw-walker is able to operate more efficiently, making for more efficient threshing. IH produced the 453 combine which leveled both side-to-side and front-to-back, enabling efficient threshing whether on a hillside or climbing a hill head on.

Secondarily, leveling changes a combine’s center of gravity relative to the hill and allows the combine to harvest along the contour of a hill without tipping, a very real danger on the steeper slopes of the region; it is not uncommon for combines to roll on extremely steep hills.

Newer leveling systems do not have as much tilt as the older ones. A John Deere 9600 combine equipped with a Rahco hillside conversion kit will level over to 44%, while the newer STS combines will only go to 35%. These modern combines use the rotary grain separator which makes leveling less critical. Most combines on the Palouse have dual drive wheels on each side to stabilize them.

A leveling system was developed in Europe by the Italian combine manufacturer Laverda which still produces it today.

Sidehill combines are very similar to hillside combines in that they level the combine to the ground so that the threshing can be efficiently conducted; however, they have some very distinct differences. Modern hillside combines level around 35% on average, older machines were closer to 50%. Sidehill combines only level to 18%. They are sparsely used in the Palouse region. Rather, they are used on the gentle rolling slopes of the mid-west. Sidehill combines are much more mass-produced than their hillside counterparts. The height of a sidehill machine is the same height as a level-land combine. Hillside combines have added steel that sets them up approximately 2–5 feet higher than a level-land combine and provide a smooth ride.
Another technology that is sometimes used on combines is a continuously variable transmission. This allows the ground speed of the machine to be varied while maintaining a constant engine and threshing speed. It is desirable to keep the threshing speed constant since the machine will typically have been adjusted to operate best at a certain speed.

Self-propelled combines started with standard manual transmissions that provided one speed based on input rpm. Deficiencies were noted and in the early 1950s combines were equipped with what John Deere called the "Variable Speed Drive". This was simply a variable width sheave controlled by spring and hydraulic pressures. This sheave was attached to the input shaft of the transmission. A standard 4 speed manual transmission was still used in this drive system. The operator would select a gear, typically 3rd. An extra control was provided to the operator to allow him to speed up and slow down the machine within the limits provided by the variable speed drive system. By decreasing the width of the sheave on the input shaft of the transmission, the belt would ride higher in the groove. This slowed the rotating speed on the input shaft of the transmission, thus slowing the ground speed for that gear. A clutch was still provided to allow the operator to stop the machine and change transmission gears.

Later, as hydraulic technology improved, hydrostatic transmissions were introduced by Versatile Mfg for use on swathers but later this technology was applied to combines as well. This drive retained the 4 speed manual transmission as before, but this time used a system of hydraulic pumps and motors to drive the input shaft of the transmission. This system is called a Hydrostatic drive system. The engine turns the hydraulic pump capable of pressures up to 4,000 psi (30 MPa). This pressure is then directed to the hydraulic motor that is connected to the input shaft of the transmission. The operator is provided with a lever in the cab that allows for the control of the hydraulic motor’s ability to use the energy provided by the pump. By adjusting the swash plate in the motor, the stroke of its pistons are changed. If the swash plate is set to neutral, the pistons do not move in their bores and no rotation is allowed, thus the machine does not move. By moving the lever, the swash plate moves its attached pistons forward, thus allowing them to move within the bore and causing the motor to turn. This provides an infinitely variable speed control from 0 ground speed to what ever the maximum speed is allowed by the gear selection of the transmission. The standard clutch was removed from this drive system as it was no longer needed.

Most if not all modern combines are equipped with hydrostatic drives. These are larger versions of the same system used in consumer and commercial lawn mowers that most are familiar with today. In fact, it was the downsizing of the combine drive system that placed these drive systems into mowers and other machines.

Despite great advances mechanically and in computer control, the basic operation of the combine harvester has remained unchanged almost since it was invented.

First, the header, described above, cuts the crop and feeds it into the threshing cylinder. This consists of a series of horizontal rasp bars fixed across the path of the crop and in the shape of a quarter cylinder. Moving rasp bars or rub bars pull the crop through concaved grates that separate the grain and chaff from the straw. The grain heads fall through the fixed concaves. What happens next is dependent on the type of combine in question. In most modern combines, the grain is transported to the shoe by a set of 2, 3, or 4 (possibly more on the largest machines) augers, set parallel or semi-parallel to the rotor on axial mounted rotors and perpendicular Flow" combines.) In older Gleaner machines, these augers were not present. These combines are unique in that the cylinder and concave is set inside feederhouse instead of in the machine directly behind the feederhouse. Consequently, the material was moved by a "raddle chain" from underneath the concave to the walkers. The clean grain fell between the raddle and the walkers onto the shoe, while the straw, being longer and lighter, floated across onto the walkers to be expelled. On most other older machines, the cylinder was placed higher and farther back in the machine, and the grain moved to the shoe by falling down a "clean grain pan", and the straw "floated" across the concaves to the back of the walkers.

Since the Sperry-New Holland TR70 Twin-Rotor Combine came out in 1975, most manufacturers have combines with rotors in place of conventional cylinders. However, makers have now returned to the market with conventional models alongside their rotary line-up. A rotor is a long, longitudinally mounted rotating cylinder with plates similar to rub bars (except for in the above mentioned Gleaner rotaries).

There are usually two sieves, one above the other. The sieves and basically a metal frame, that has many rows of "fingers" set reasonably close together. The angle of the fingers is adjustable as to change the clearance and control the size of material passing through. The top is set with more clearance than the bottom as to allow a gradual cleaning action. Setting the concave clearance, fan speed, and sieve size is critical to ensure that the crop is threshed properly, the grain is clean of debris, and that all of the grain entering the machine reaches the grain tank or ‘hopper’. ( Observe, for example, that when travelling uphill the fan speed must be reduced to account for the shallower gradient of the sieves.)

Heavy material, e.g., unthreshed heads, fall off the front of the sieves and are returned to the concave for re-threshing.

The straw walkers are located above the sieves, and also have holes in them. Any grain remaining attached to the straw is shaken off and falls onto the top sieve.

When the straw reaches the end of the walkers it falls out the rear of the combine. It can then be baled for cattle bedding or spread by two rotating straw spreaders with rubber arms. Most modern combines are equipped with a straw spreader.

For some time, combine harvesters used the conventional design, which used a rotating cylinder at the front-end which knocked the seeds out of the heads, and then used the rest of the machine to separate the straw from the chaff, and the chaff from the grain. The TR70 from Sperry-New Holland was brought out in 1975 as the first rotary combine. Other manufacturers soon followed, IH with their ‘Axial Flow’ in 1977 and Gleaner with their N6 in 1979.

In the decades before the widespread adoption of the rotary combine in the late seventies, several inventors had pioneered designs which relied more on centrifugal force for grain separation and less on gravity alone. By the early eighties, most major manufacturers had settled on a "walkerless" design with much larger threshing cylinders to do most of the work. Advantages were faster grain harvesting and gentler treatment of fragile seeds, which were often cracked by the faster rotational speeds of conventional combine threshing cylinders.

It was the disadvantages of the rotary combine (increased power requirements and over-pulverization of the straw by-product) which prompted a resurgence of conventional combines in the late nineties. Perhaps overlooked but nonetheless true, when the large engines that powered the rotary machines were employed in conventional machines, the two types of machines delivered similar production capacities. Also, research was beginning to show that incorporating above-ground crop residue (straw) into the soil is less useful for rebuilding soil fertility than previously believed. This meant that working pulverized straw into the soil became more of a hindrance than a benefit. An increase in feedlot beef production also created a higher demand for straw as fodder. Conventional combines, which use straw walkers, preserve the quality of straw and allow it to be baled and removed from the field.

Grain combine fires are responsible for millions of dollars of loss each year. Fires usually start near the engine where dust and dry crop debris accumulate.[19] From 1984 to 2000, 695 major grain combine fires were reported to local fire departments.[20] Dragging chains to reduce static electricity was one method employed for preventing harvester fires, but the role of static electricity linked to causing harvester fires is yet to be established.
Quelle:
en.wikipedia.org/wiki/Combine_harvester
de.wikipedia.org/wiki/M%C3%A4hdrescher

Posted by !!! Painting with Light !!! #schauer on 2014-08-07 06:49:19

Tagged: , Schauer , Christian , Oberdiendorf , Thyrnau , Passau , Hauzenberg , Bayern , Bavaria , Deutschland , Germany , Ernte , Harvest , Harvester , Bauer , Farmer , Landwirt , Natur , Nature , Old , Alt , Nostalgie , Denim , Retro , Vintage , Farm , Bauernhof , Strom , Reifen , Wheel , Stahl , Steel , Outdoor , München , Munich , Deutz , Fahr , John , Deere , Landwirtschaft , Öko , Ökologie , Messer , Knife , Stroh , agricultor , agriculteur , Fahrzeug , Vehicle , Vehículo , véhicule , Mähdrescher , Traktor , Bulldog , tracteur , Tractor , agriculture , agricultura , récolte , cosecha , Kuh , Cow , Landschaft , Landscape , Feld , Field , Korn , Corn , Mais , driver , fahrer , Pussy , Paining , with , Light , Gras

ZF Passau, Werk II in Patriching

ZF Passau, Werk II in Patriching

Ein Blitz ist in der Natur eine Funkenentladung oder ein kurzzeitiger Lichtbogen zwischen Wolken oder zwischen Wolken und der Erde. In aller Regel tritt ein Blitz während eines Gewitters infolge einer elektrostatischen Aufladung der wolkenbildenden Wassertröpfchen oder der Regentropfen auf. Er wird dabei vom Donner begleitet und gehört zu den Elektrometeoren. Dabei werden elektrische Ladungen (Elektronen oder Gas-Ionen) ausgetauscht, d. h. es fließen elektrische Ströme. Blitze können auch, je nach Polarität der elektrostatischen Aufladung, von der Erde ausgehen.

Künstlich im Labor mit Hochspannungsimpulsen erzeugte Blitze dienen deren Studium oder der Überprüfung von Einrichtungen des Stromnetzes hinsichtlich der Effekte von Blitzeinschlägen und der Wirksamkeit von Schutzmaßnahmen.

Eine Blitzentladung ist deutlich komplexer als eine reine Funkenentladung. Die der natürlichen Blitzentstehung zugrunde liegenden physikalischen Gesetzmäßigkeiten sind bis heute nicht abschließend erforscht.
Benjamin Franklin bewies am 15. Juni 1752 die Hypothese, dass bei Gewittern eine elektrische Spannung zwischen Wolken und der Erde besteht, indem er einen Drachen in aufziehende Gewitterwolken aufsteigen ließ und so eine Funkenentladung auslöste. Dies war der Beginn der neuzeitlichen Blitzforschung. Bis heute sind allerdings nicht alle Erscheinungsformen von Blitzen sowie die damit verbundenen Effekte umfassend und unumstritten wissenschaftlich erklärt, insbesondere wie die Ladungsunterschiede entstehen, die zum Blitz führen.

Heutzutage haben sich verschiedene Verfahren zur Untersuchung von Blitzen etabliert, die auch darauf achten, das Risiko für die Forscher möglichst gering zu halten (im Gegensatz zur Methode Franklins). Häufig werden Raketen abgeschossen, die einen metallischen Draht hinter sich herziehen (Blitztriggerung). Der Blitz gelangt durch den Draht zur Messstation, wo er analysiert werden kann. Andere Verfahren stützen sich auf Wetterballons oder Messungen durch Flugzeuge.

Lange Zeit war das Forschungsinteresse an natürlichen Blitzen gering, da man glaubte, sie wie Funkenentladungen behandeln zu können, wie sie ohne Weiteres im Labor erzeugt werden können. Erst seit Ende der 1990er-Jahre hat sich dies geändert, da Ungereimtheiten auftraten, die durch das einfache Modell nicht erklärt werden konnten. Es stellte sich als unmöglich heraus, mit den heutigen Mitteln Blitze zur Energiegewinnung auszunutzen.

Einige der jüngsten Forschungsprojekte sind:

In Österreich läuft auf dem Salzburger Sender Gaisberg ein Blitzforschungsprojekt von ALDIS. Es werden dabei direkte Blitzeinschläge in den Senderturm ausgewertet und unter anderem der Blitzstromverlauf messtechnisch erfasst.
In Brasilien untersucht das DLR-Forschungsflugzeug Falcon die Entstehung von Stickoxiden durch Blitze in tropischen Gewittern.
Im Jahre 2001 konnte nachgewiesen werden, dass Blitze auch Röntgen- und Gammastrahlung aussenden. Diese Ergebnisse wurden in den folgenden Jahren vielfach bestätigt, besonders durch den Nachweis von Gammastrahlung aus Gewitterzonen durch den NASA-Forschungssatelliten RHESSI.
Im Blitzkanal können auch Kernfusionsreaktionen stattfinden, wie durch Messungen einer russischen Forschungsgruppe nahe Moskau festgestellt wurde, wobei der während der Entladung auftretende Neutronenfluss einige Hundertfache des natürlichen Neutronenflusses (zirka 50 pro cm² und Stunde) betragen kann.
Am häufigsten beobachtet man Blitze zwischen speziellen Wolkentypen wie Cumulonimbus und Erde, in den Tropen fast täglich, in gemäßigten Breiten vorwiegend während der Sommermonate. Sehr zahlreiche Blitze werden auch bei Vulkanausbrüchen[3] beobachtet, bei denen aufsteigende Feuchtigkeit wohl nicht als Ursache in Frage kommt. In beiden Fällen konnte bisher nicht lückenlos aufgeklärt werden, wodurch es zu der gewaltigen Ladungstrennung kommt, die vorher stattgefunden haben muss. Rätselhaft ist der offensichtliche Unterschied zu Laborexperimenten mit Gasen, wo es wegen der guten Beweglichkeit der Moleküle schwierig ist, Ladungstrennung ohne metallische Leiter und Isolatoren zu erzeugen und längere Zeit aufrechtzuerhalten.

Entstehung elektrischer Ladung in einer Gewitterwolke
Grundvoraussetzung für die Entstehung von Blitzen ist die Ladungstrennung. Nach heutigem Wissensstand können eine Reihe von Mechanismen innerhalb der Gewitterwolken dazu beitragen. Man unterscheidet dabei zwischen Aufladungsmechanismen, die mit Influenz und ohne Influenz wirken können, wobei letztere die weitaus wichtigere Kategorie darstellen.

Grundvoraussetzung für die Trennung von elektrischer Ladung ist die Reibung durch kräftige Aufwinde innerhalb einer Cumulonimbuswolke, die 5–20 m/s und mehr[4] erreichen können. In der Wolke kondensiert übersättigter Wasserdampf zu kleinen, aber ständig wachsenden Wassertröpfchen. Die Kondensation setzt Wärme frei. Dadurch bekommt die Luft eine höhere Temperatur als sie in gleicher Höhe ohne Kondensation hätte. Dies erhöht ihren Auftrieb im Vergleich zur Luft außerhalb der Wolke. Der Aufstieg beschleunigt sich. Beim Aufstieg kühlt sich die Luft durch den mit der Höhe sinkenden Druck adiabatisch ab, was die Kondensation verstärkt und den Aufstieg weiter beschleunigt. In einigen Kilometern Höhe wird die Nullgradgrenze unterschritten und die Wassertropfen gefrieren zu Eispartikeln, die durch Resublimation weiter anwachsen. Mit der Zeit werden die Graupelteilchen schwer genug, dass sie entgegen der Richtung der Aufwinde zum Erdboden fallen.

Vermutlich kollidieren in diesem Stadium kleinere, noch leichte Eiskristalle mit den Graupelteilchen und geben dabei Elektronen an die Graupelteilchen ab. Diese nehmen eine negative Ladung an und sinken so geladen weiter in den unteren Teil der Wolke. Die leichten, jetzt positiv geladenen Eiskristalle werden von den Aufwinden weiter nach oben getragen. Bei ausreichend hoher Steiggeschwindigkeit kommt es zu einer Ladungstrennung und es entstehen beachtliche Raumladungen.[5] In der Tropical Rainfall Measurement Mission (TRMM) wurde festgestellt, dass die Stärke der Raumladungen direkt vom Eisgehalt der Wolke abhängt. Das bedeutet eine starke Korrelation zwischen der Eismenge in einer Wolke und der Blitzhäufigkeit.[6]

In Wolkenbereichen mit hohem Graupelanteil werden Luftmassen durch die nach unten fallenden Graupelteilchen mit nach unten gerissen und es entstehen Abwindkanäle in der Gewitterwolke. In ihnen gelangen die negativ geladenen Graupelteilchen zunächst in den unteren Teil der Wolke. Der nun negativ geladene untere Teil der Wolke bewirkt nun durch Influenz, dass sich der unter der Wolke befindliche Erdboden positiv auflädt, es kommt zur klassischen Ladungsverteilung in einer Gewitterwolke. Hinzu kommt, dass im unteren Teil der Gewitterwolke die Graupelteilchen wieder schmelzen und sich dabei wieder positiv aufladen. Die gängige Erklärung lautet, dass sich beim Anwachsen des Graupelteilchens in der Höhe Lufteinschlüsse bilden, die beim späteren Auftauen den Wassertropfen verlassen und dabei an der Oberfläche befindliche negative Ladung mit sich nehmen. Auf diese Weise wird der unter der Wolke ausfallende Niederschlag elektrisch neutral oder – wie man beobachtet hat – sogar positiv geladen, während die negative Ladung im unteren Teil der Wolke verbleibt.[7] Die teilweise extrem starken Turbulenzen innerhalb von Gewitterwolken erlauben kaum eine experimentelle Überprüfung all dieser Vermutungen.

Man kann sich weitere Prozesse vorstellen, welche diese Ladungsverteilung unterstützen: Die durch Resublimation anwachsenden Graupelteilchen können sich positiv aufladen und diese ihre Ladung bei Kollisionen an leichtere Eiskristalle abgeben, bevor oder während sie in Richtung Erdboden fallen. Der umgekehrte Effekt, also die negative Aufladung von sublimierendem Eis, käme dann in den Abwindkanälen zum Tragen.[7]

In der bereits geladenen Gewitterwolke können weitere Ladungstrennungsmechanismen hinzukommen: Der Nobelpreisträger Charles Thomson Rees Wilson schlug im Jahre 1929 vor, dass die durch die Anwesenheit der Raumladung dipol-artig vorgeladenen und entsprechend (trotz hoher Turbulenz!) ausgerichteten Niederschlagspartikel in der Luft befindliche Ionen je nach Polarität entweder eingefangen oder abgestoßen werden können, unabhängig, ob diese gefroren oder flüssig sind.

In der Praxis kann man mit Elektrofeldmetern messen, dass die oben dargestellte Ladungsverteilung im Gewitter häufig zutrifft, dass es aber auch abhängig von der Art des Gewitters (Frontengewitter, Wärmegewitter) und des Reifestadiums starke Abweichungen geben kann, wie zum Beispiel weit in den unteren Teil der Wolke reichende positive Raumladungen, negative Areale am Boden oder positive Wolkenuntergrenze im Spätstadium eines Gewitters. Eine Klärung aller Zusammenhänge steht bis heute aus.
Ein Blitz ist ein Potentialausgleich innerhalb der Wolke (Wolkenblitz) oder zwischen dem Erdboden und dem unteren Teil der Wolke (Erdblitz). Für Blitze zwischen der Wolke und der Erde muss der Potentialunterschied (die Spannung) einige zehn Millionen Volt betragen. In Luft kommt es erst zu einer elektrischen Funkenentladung bei einer elektrischen Feldstärke von ca. drei Millionen Volt pro Meter (der so genannten Durchbruchfeldstärke); dieser Wert sinkt jedoch stark mit zunehmender Luftfeuchtigkeit. Allerdings wurden solche Feldstärken in einer Gewitterwolke noch nie gemessen. Messungen ergeben nur extrem selten Feldstärken von über 200.000 V/m, was deutlich unter dem Wert für den Durchbruch liegt. Daher wird heute davon ausgegangen, dass die Luft zuerst durch Ionisation leitfähig gemacht werden muss, damit es zu einer Blitzentladung kommen kann.

Entstehung eines Blitzkanals durch Ionisation: Leitblitz, Fangentladung und Hauptblitz
Einige Forscher, als erster Wilson im Jahre 1925, gehen davon aus, dass durch kosmische Strahlung angeregte Elektronen den Anfang einer Blitzentstehung bilden. Trifft ein solches Elektron auf ein Luftmolekül einer Gewitterwolke, so werden weitere hochenergetische Elektronen freigesetzt. Es kommt zu einer Kettenreaktion, in deren Folge eine Elektronenlawine entsteht (Runaway-Elektronen genannt, der genaue Mechanismus findet sich im Artikel Runaway-Breakdown erklärt).

Einer Blitzentladung geht eine Serie von Vorentladungen voraus, die gegen die Erdoberfläche gerichtet sind. Dabei wird ein Blitzkanal (Leitblitz) geschaffen, d. h. ein elektrisch leitender Kanal wird durch Stoßionisation der Luftmoleküle durch die Runaway-Elektronen gebildet. Der ionisierte Blitzkanal baut sich stufenweise auf (daher engl. stepped leader), bis er zwischen Erdoberfläche und Wolke hergestellt ist. Die Vorentladungen sind zwar zum Erdboden hin gerichtet, variieren aber innerhalb weniger Meter leicht ihre Richtung und können sich stellenweise aufspalten. Dadurch kommen die Zick-Zack-Form und die Verästelungen des Blitzes zustande. Der Leitblitz emittiert – wie neue Forschungen zeigen – auch Röntgenstrahlung mit einer Energie von 250.000 Elektronenvolt (siehe hierzu die Literaturhinweise). Forscher der Universität Florida haben 2004 nachgewiesen, dass die gemessenen Ausbrüche von Röntgenstrahlen zusammen mit der Bildung der einzelnen Stufen des Leitblitzes auftreten. Dabei nimmt die Intensität der Strahlung mit der Anzahl der Stufen zu, je länger also der Blitzkanal wird. Während der Hauptentladungen wurden keine Röntgenstrahlen gemessen. Noch ist nicht bekannt, wodurch die Elektronen im Leitblitz so stark beschleunigt werden. Der Vorgang des Runaway-Breakdown allein reicht für die gemessene Strahlung nicht aus (siehe dazu auch in den Weblinks).

Kurz bevor die Vorentladungen den Erdboden erreichen, gehen vom Boden eine oder mehrere Fangentladungen aus, welche bläulich und sehr lichtschwach sind. Eine Fangentladung tritt meistens bei spitzen Gegenständen (wie Bäumen, Masten oder Kirchtürmen) aus, welche sich in ihrer Höhe von der Umgebung abheben. Meist – aber nicht immer – trifft eine der Fangentladungen mit den Vorentladungen zusammen und bildet einen geschlossenen Blitzkanal zwischen Wolke und Erdboden. Der Blitzkanal weist maximal 12 mm im Durchmesser auf. Durch diesen Kanal erfolgt dann die Hauptentladung, welche sehr hell ist und als eigentlicher Blitz wahrgenommen wird. Das Leuchten des Blitzes wird durch die Bildung von Plasma verursacht.
Im Durchschnitt bilden vier bis fünf Hauptentladungen einen Blitz. Die Vorentladungen benötigen zusammengenommen etwa 0,01 Sekunden, die Hauptentladung dauert nur 30 µs (0,00003 s). Nach einer Erholungspause zwischen 0,03 s und 0,05 s erfolgt eine neue Entladung. Es wurden schon bis zu 42 aufeinander folgende Entladungen beobachtet. Dadurch kommt das Flackern eines Blitzes zustande.

Die Stromstärke einer Hauptentladung beträgt im Durchschnitt etwa 20.000 Ampere, wodurch ein starkes Magnetfeld den Blitzkanal umgibt. Die Kombination aus Strom und Magnetfeld bewirkt eine Kompression des leitfähigen Plasmakanals (Pinch-Effekt), der einen Durchmesser von nur wenigen Zentimetern besitzt.

Meistens fließt die negative Ladung von der Wolkenunterseite zum Boden, man spricht vom Negativblitz. In seltenen Fällen wird positive Ladung der Erdoberfläche zugeführt (Positivblitz). Meistens handelt es sich hierbei um eine besonders intensive Entladung, deren Hauptentladung auch deutlich länger anhält als beim Negativblitz. Der Positivblitz besteht in aller Regel auch nur aus einer Hauptentladung. Die Stromstärke einer Hauptentladung bei Positivblitzen wird mit bis zu 300.000 Ampere angegeben. Sie sind daher weitaus gefährlicher als Negativblitze, machen allerdings nur etwa 5 % aller Erdblitze aus. Positivblitze entstammen oft dem oberen, positiv geladenen Teil der Gewitterwolke oder dem Wolkenschirm. Sie können auch aus der Wolke austreten und durch den wolkenfreien Raum ihren Weg zu einem Einschlagsziel am Boden nehmen. Die Einschlagstelle kann dabei durchaus einige Kilometer von der Gewitterzelle entfernt liegen. Positivblitze treten auch in den rückwärtigen, stratiformen Bereichen des Gewitters sowie in deren Auflösungsphase auf. Außerdem haben Wintergewitter, in denen der Niederschlag in gefrorener Form fällt, einen hohen Positivblitzanteil.[8]

Die Anstiegsgeschwindigkeit eines Blitzstroms beträgt durchschnittlich 7000 Ampere pro Mikrosekunde. Demzufolge steigt auch die Stärke des dazugehörigen Magnetfelds entsprechend an. Dadurch ist ein Blitz in der Lage, selbst in mehreren Kilometern Entfernung erhebliche elektrische Spannungen zu induzieren.

Anschließend zum Hauptblitz kann durch den ionisierten Blitzkanal ein Ladungsausgleich erfolgen, der 10 bis einige 100 ms anhält. Dabei fließt ein annähernd konstanter Strom von 10 bis 1000 A. Dieser Langzeitstrom tritt häufig nach positiven Blitzen auf und wird auch als „Stromschwanz“ bezeichnet.

Die durchschnittliche Länge eines Erdblitzes (Negativblitz) beträgt in mittleren Breiten 1 bis 2 km, in den Tropen aufgrund der höheren Luftfeuchtigkeit 2 bis 3 km. Positivblitze reichen nicht selten von den oberen Regionen der Gewitterwolke bis zum Erdboden und kommen daher auf Längen von deutlich über 10 km. Ein Wolkenblitz ist ca. fünf bis sieben Kilometer lang.

Entstehung des Donners
→ Hauptartikel: Donner
Im Blitzkanal wird die Luft schlagartig auf bis zu 30.000 °C erhitzt. Das den Blitzkanal schlauchförmig umhüllende Magnetfeld verhindert dabei die Ausdehnung der ionisierten und damit magnetisch beeinflussbaren Luftmoleküle. Die Folge ist ein extrem hoher Druck. Mit dem Ende des Leitblitzes und damit des Stroms bricht auch das Magnetfeld zusammen und die heiße Luft dehnt sich explosionsartig aus, wodurch der Knall des Donners hervorgerufen wird. Das Grollen des Donners kommt durch Echo-Effekte, durch unterschiedliche Distanzen zum Blitzkanal und durch Dispersion (Abhängigkeit der Schallausbreitung von der Wellenlänge) zustande. Der Blitz selbst erreicht etwa ein Zehntel bis ein Drittel der Lichtgeschwindigkeit, wobei die für das Auge nicht wahrnehmbare Vorentladung (Leitblitz) nur mit einem Tausendstel der Lichtgeschwindigkeit verläuft, also mit 300 Kilometer pro Sekunde. Blitzentladungen innerhalb der Wolke werden gewöhnlich von einem länger anhaltenden und weniger scharf polternden Geräusch begleitet. Dies hängt zum einen mit der gewöhnlich größeren Distanz zusammen, ist aber vor allem auf die verschiedene Orientierung und Struktur von Erdblitz und Wolkenblitz zurückzuführen.

An der Stelle, wo der Blitz in den Boden geht (oder aus ihm heraus) bildet sich ein starkes Spannungsfeld (hohes Potential), das von der Stelle des Einschlags nach außen hin kreisförmig abnimmt und sich in das Erdreich kegelförmig spitz fortsetzt, daher der Name. Fläche, Tiefe und Potential des Kegels sind z. B. abhängig von der Stärke des Blitzes, der Bodenbeschaffenheit und Feuchtigkeit. Im Zentrum des Kegels kann es zu Gesteinsaufschmelzung kommen. Es entsteht dann ein Fulgurit.

Mit „Blitzschlag“ ist nicht nur der direkte Treffer gemeint, sondern auch Schädigungen durch den Spannungskegel. Steht z. B. ein Blitzopfer mit beiden Beinen auf dem Boden, befindet sich jedes Bein auf einem etwas anderen Potential. Die Potentialdifferenz im Körper, die sogenannte Schrittspannung, führt zu Schäden an Organen. Diese sind nicht tödlich, falls die Differenz gering ist, z. B. wenn das Opfer im Moment des Einschlags beide Füße dicht nebeneinander hat und die Spannungsdifferenz minimiert ist. Bei jemandem, der mit Kopf oder Füßen in Richtung Einschlagstelle liegt, ist die Spannungsdifferenz u. U. aber sehr groß. Dann kann auch ein Einschlag, der weiter entfernt ist, zu schweren Schäden führen. Aus diesem Grund sind vierbeinige Tiere (Kühe auf der Weide) besonders gefährdet. Stärke und Form des Spannungskegels sind in der Regel nicht vorhersehbar.

Linienblitz
Ein Linienblitz hat keine Verzweigungen. Er sucht sich jedoch nicht immer den direkten Weg zum Erdboden, sondern kann auch Bögen beschreiben, die aus einer bestimmten Perspektive als Knoten und kreisförmige Verschlingungen gesehen werden können. Der Linienblitz ist häufiger zu sehen als andere Blitze.

Flächenblitz
Ein Flächenblitz zeigt zahlreiche Verzweigungen vom Hauptblitzkanal.

Perlschnurblitz
Der Perlschnurblitz ist eine Blitzart, bei der der Blitz nicht durch einen zusammenhängenden Blitzkanal gekennzeichnet ist, sondern in einzelne, meistens nur wenige Meter lange Segmente zerfällt. Diese einzelnen Segmente leuchten heller und meistens auch etwas länger als ein „normaler“ Linienblitz. Von weitem betrachtet sehen die kurzen, leuchtenden Segmente des Blitzes wie eine Perlenschnur aus.

Perlschnurblitze sind wie Kugelblitze sehr seltene Blitzphänomene. In Laboren ist es bereits gelungen, Perlschnurblitze künstlich zu erzeugen. Dennoch hat man ihre Bildung noch nicht restlos verstanden: Als Ursache könnten Instabilitäten im Plasma des Blitzkanals in Frage kommen.

Kugelblitz
Kugelblitze können angeblich durch Mauern und Ritzen dringen, Treppen steigen oder sich im Sturm langsam gegen die Windrichtung bewegen. Dafür gibt es keine physikalische Grundlage.

Wetterleuchten
Unter Wetterleuchten (mittelhochdeutsch weterleichen zu „weter“ (Wetter) + „leichen“ (tanzen, hüpfen), nicht verwandt mit leuchten, wie oft angenommen) wird meistens der Widerschein von Blitzen verstanden, wenn man die Blitze selbst nicht sieht. Es kann bei einem weit entfernten Gewitter oder bei Blitzen, die sich innerhalb von Wolken entladen, entstehen. Den Donner hört man wegen der großen Distanzen meistens nicht oder nur schwach.

Elmsfeuer
→ Hauptartikel: Elmsfeuer
Ein Elmsfeuer ist eine Funkenentladung gegen die umgebende Luft. Technisch betrachtet ist sie eine Vorentladung aufgrund großer Feldstärke. Sie tritt meistens an hohen Gegenständen wie Antennenmasten, Schiffsmasten, Flugzeugen (beim Fliegen in Gewitternähe oder einer mit Aschepartikeln durchtränkten Luftschicht) oder Gipfelkreuzen auf. Elmsfeuer können eine Blitzentladung einleiten. Bergsteiger berichten oft, dass diese sog. Spitzenentladung auch am Pickel auftritt, den man daher bei Gewittern nicht in der Hand tragen soll.

Positiver Blitz
Ein positiver Blitz ist ein Blitz, bei dem die Blitzentladung aus dem oberen, positiv geladenen Teil der Wolke zum Boden erfolgt. Diese Blitze sind um einiges stärker als negative Blitze und können kilometerweit vom eigentlichen Gewitter entfernt einschlagen. Zusätzlich leuchten sie auch länger als ein negativer Blitz und können einen weit größeren Schaden anrichten. Der Donner ist durch den länger anhaltenden Potentialausgleich lauter, einem Knall ähnlich und wird von einem niederfrequenten Poltern begleitet.

Entfernungsabschätzung über das Zeitintervall zum Donner
Um bei einem Gewitter ohne Messmittel eine ungefähre Entfernungsangabe zu erhalten, kann die Zeit zwischen Blitz und Donner gemessen (gezählt) werden. Dabei wird die Laufzeit des Lichtes als geringfügig vernachlässigt. Diese Zeit in Sekunden, multipliziert mit der Schallgeschwindigkeit (343 m/s), ergibt die Entfernung in Metern. Annäherungsweise kann auch die Zeit in Sekunden geteilt durch drei für die ungefähre Entfernung in Kilometern gerechnet werden. Zur Bestimmung des Donnerzeitpunktes ist dabei stets das erste wahrnehmbare Schallsignal zu verwenden, welches vom Blitz auf kürzestem Weg zum Beobachter gelangt, und somit die Entfernung zu diesem Abschnitt des Blitzkanals relativ genau wiedergibt. Je nach Art des Blitzes ist dieser Blitzkanalabschnitt im Allgemeinen entweder der am nächsten zum Beobachter liegende Teil eines Wolkenblitzes, oder der etwas oberhalb des Bodens liegende eines Bodenblitzes. Die Schallsignale von weiter entfernten Abschnitten des Blitzkanals bilden zusammen mit durch Reflexionen und Beugungen verzögerten Bestandteilen das Donnergrollen, welches wesentlich lauter als das Primärereignis sein kann.

Blitze richten in Deutschland jährlich Schäden in Höhe von mehreren Millionen Euro an. Durch Blitzeinschlag können Haus- und Waldbrände entstehen, zunehmend werden jedoch elektrische Geräte beschädigt. Zum Schutz werden daher viele Gebäude mit einem Blitzschutzsystem versehen. Von Versicherungsgesellschaften wird der Blitzschutz privater Gebäude jedoch nicht ausdrücklich verlangt.

Schäden entstehen jedoch nicht nur durch direkten Einschlag, sondern auch durch Potentialunterschiede elektrischer Anlagen oder des Bodens, sowie durch elektromagnetische Induktion in längeren Kabelstrecken. Überspannungsschutzsteckdosen für elektronische Geräte wie Computer sind daher recht unzureichende Glieder einer Kette von Maßnahmen des Blitzschutzes. Werden sie allein eingesetzt, schützen sie insbesondere dann kaum, wenn an den Geräten weitere Leitungen angeschlossen sind (Telefonleitung, Antennenanlage, Kabelfernsehen). Wirksamer ist, alle Leitungen (Strom, Gas, Wasser, Telefon, Antenne, Kabelfernsehen) bei Gebäudeeintritt auf eine gemeinsame Potentialausgleichsschiene zu führen. Zusätzlich sollten die Strom- und Signalleitungen mit Überspannungsableitern (Grob- und Feinschutz) versehen sein. Bei Antennenanlagen gilt weiterhin die alte Regel, den Antennenstecker vor einem Gewitter vom Gerät abzuziehen.

Ein besonders spektakulärer Blitzschaden ereignete sich 1970 am Langwellensender Orlunda in Schweden. Damals zerstörte ein Blitzschlag den Fußpunktisolator des 250 Meter hohen Zentralmasts des Langwellensenders und brachte diesen dabei zum Einsturz.

Wirkung auf Menschen
Während eines Gewitters ist man im Freien – vor allem auf erhöhten Standpunkten – der Gefahr des Blitzschlags ausgesetzt. Die Wirkung eines direkten Blitzschlages entspricht dem eines Stromunfalls mit den für Hochspannungsunfälle typischen Verletzungen wie Verbrennungen. Dabei können sich Hautverletzungen in Form einer Lichtenberg-Figur ausbilden.

Weiter kann es durch den lauten Knall, welcher in einiger Entfernung als Donner wahrgenommen wird, zu Gehörschäden wie einem Hörsturz oder Tinnitus kommen. Je nach Situation können weitere indirekte Wirkungen bestehen, beispielsweise durch das Erschrecken oder die Blendwirkung, welche zu Folgeunfällen führen können. Personen, die sich in der Nähe eines Blitzschlags befunden haben, haben in der Folgezeit zum Teil physiologische oder psychische Störungen oder Veränderungen,[19][20] die sich sogar dauerhaft in einer Persönlichkeitsveränderung auswirken können.[21]

Tödlicher Blitzschlag ist in Deutschland selten geworden; die durchschnittlich drei bis sieben Todesopfer pro Jahr ließen sich durch weitere Vorsichtsmaßnahmen noch weiter reduzieren.[22] Im 19. Jahrhundert wurden in Deutschland noch an die 300 Personen jährlich vom Blitz getötet, da wesentlich mehr Menschen auf freiem Feld arbeiteten und sich nicht in geschützte Objekte wie Autos, Traktoren oder Mähdrescher zurückziehen konnten.

Verhalten bei Gewittern
Um nicht vom Blitz getroffen oder durch einen nahen Einschlag verletzt zu werden, müssen Sicherheitsvorkehrungen getroffen werden, von denen die wichtigsten hier vorgestellt werden. Nach der 30/30-Regel geht man davon aus, dass die Gefahr, von einem Blitz getroffen zu werden, hoch ist, sobald bei Heraufziehen eines Gewitters zwischen Blitz und Donner weniger als 30 Sekunden liegen bis zu dem Zeitpunkt, wo 30 Minuten nach dem letzten Blitz oder Donner vergangen sind.[23] Innerhalb dieser Zeit soll ein sicherer Ort aufgesucht und nicht wieder verlassen werden.

Schutz in Gebäuden oder Fahrzeugen suchen. Fahrzeuge mit geschlossener Metallkarosserie und Gebäude mit einem Blitzschutzsystem oder aus Stahlbeton wirken wie ein Faradayscher Käfig. Der metallische Käfig muss allerdings entsprechend dimensioniert sein, um die hohen Impulsströme ohne mechanische Verformungen aufnehmen zu können. Gelegentlich wird gemeldet, dass vom Blitz getroffene Autos Feuer gefangen haben[24]. Einen guten Schutzraum stellen außerdem die Bereiche am Boden unter Hochspannungsleitungen dar, welche über metallische Masten verfügen und deren Masten über Erdseile verbunden sind. Durch das Erdseil wird der Blitzstrom auf mehrere geerdete Masten verteilt und damit die Schrittspannung im Bereich des Erdungspunktes reduziert.[25] Gefahr droht weiter durch indirekte Auswirkungen wie die Schallwirkung (Knall), durch die Blendwirkung und den Schreck durch die Überraschung. Dadurch können Folgeunfälle, wie beispielsweise Stürze, ausgelöst werden.
Wenn kein Schutz in Gebäuden oder Fahrzeugen gefunden werden kann, gelten folgende Regeln:

Offenes Gelände, Hügel und Höhenzüge meiden.
Aufenthalt auf oder in Gewässern und Pools vermeiden.
Wegen der Schrittspannung Füße zusammenstellen, in die Hocke gehen, Arme am Körper halten, den Kopf einziehen, eine Vertiefung aufsuchen. Nicht auf den Boden legen, sondern den Kontaktbereich zum Boden minimieren.
Von allen größeren Objekten, auch Personen, mindestens 3 m Abstand halten (Überschlaggefahr)
Baurecht und Blitzschutz
→ Hauptartikel: Blitzschutz
Gesetzliche Vorgaben
Bauliche Anlagen, bei denen nach Lage, Bauart oder Nutzung Blitzschlag leicht eintreten oder zu schweren Folgen führen kann, sind mit dauernd wirksamen Blitzschutzanlagen zu versehen. (Deutschland – Auszug aus der Musterbauordnung 2002)

Bauliche Anlagen sind mit Blitzschutzanlagen, die den Erfahrungen der technischen Wissenschaften entsprechen, auszustatten, wenn sie durch ihre Höhe, Flächenausdehnung, Höhenlage oder Bauweise selbst gefährdet oder widmungsgemäß für den Aufenthalt einer größeren Personenzahl bestimmt sind oder wenn sie wegen ihres Verwendungszweckes, ihres Inhaltes oder zur Vermeidung einer Gefährdung der Nachbarschaft eines Blitzschutzes bedürfen. (Österreich – Auszug aus der Bauordnung Wien)

Diese oder ähnliche Vorgaben finden sich in vielen Landesbauordnungen. Der Gesetzgeber schreibt damit für jedes Bauvorhaben eine Einzelfallprüfung vor. Es ist zu prüfen, ob Blitzschlag leicht eintreten (zum Beispiel anhand der Lage und Ausdehnung des Gebäudes) oder zu schweren Folgen (zum Beispiel Personenschaden) führen kann.

Risikoanalyse – Blitzschutznachweis
Der Gesetzgeber benennt keine technische Regel, nach der diese Prüfung durchgeführt werden soll. Im Prinzip ist daher der Bauherr/Architekt in der Nachweisführung frei, soweit alle im Gesetzestext genannten Einflussgrößen (Lage, Bauart, Nutzung, Folgen) detailliert betrachtet werden.

In der Praxis erweist sich das als gar nicht so einfach, weil in der Regel die erforderlichen Abschätzungen eine entsprechende Erfahrung voraussetzen. Welcher Arbeitsaufwand hinter einer fachgerechten Risikobeurteilung stecken kann, lässt sich anhand der EN 62305 (VDE 0185-305)-11 Teil 2 ablesen. Diese Norm erfüllt vom Umfang die gesetzlichen Mindestanforderungen, die Anwendung ist also baurechtlich zulässig. Andererseits ist der Aufwand für die Datenerfassung und Berechnung für viele Bauvorhaben unangemessen hoch. Besonders problematisch ist jedoch, dass in Einzelfällen die Berechnungsergebnisse nicht mit dem geltenden Baurecht in Einklang stehen. Der Gesetzgeber oder die Rechtsprechung haben für bestimmte Gebäudetypen/Nutzergruppen andere Festlegungen getroffen. Weichen die Berechnungsergebnisse der Risikoermittlung von den gesetzlichen Forderungen ab, so sind grundsätzlich die höheren Anforderungen umzusetzen.

Die Risikoermittlung wird immer nur der erste Schritt bei der Planung einer Blitzschutz-Anlage sein, in einem weiteren Schritt sind die baurechtlichen Besonderheiten zu berücksichtigen und anschließend sind die in der Risikoermittlung getroffenen Annahmen (ausgewählte Reduktionsfaktoren, Schadenfaktoren usw.) umzusetzen. Auch für die anschließende Planung des Blitzschutzes einer baulichen Anlage werden in der EN 62305-11 Teil 1 bis 4 weiterführende Aussagen getroffen.

Nutzung von Blitzenergie
→ Hauptartikel: Nutzung von Blitzenergie
Mythologie
In der Bibel werden Blitze (und Donner) zum Beispiel für den Zorn Gottes verwendet (Ex 9,24 EU; 2 Sam 22,15 EU; Hi 37 EU; Ps 18 EU), für das Strafgericht Gottes (Sach 9,14 EU), für Gottes Offenbarung an die Menschen (Ex 20,18 EU; Offb 4,5 EU), für das Kommen des Menschensohnes (Mt 24,27 EU; Lk 17,24 EU), für das Fallen des Satans (Lk 10,18 EU), und für das Wesen der Engel und Auferstandenen (Hes 1,14 EU; Dan 10,6 EU; Mt 28,3 EU).

In der griechischen Antike waren die Blitze dem Zeus (wie bei den Römern dem Jupiter) zugeordnet, der sie schleuderte. Ein Blitzbündel in seiner Hand findet sich in literarischen Quellen (bspw. bei Homer) und auf Darstellungen seither.

Die Etrusker sahen in Blitzen Orakel, durch die sie die Zukunft und die Welt zu deuten versuchten. Die so genannten libri fungurales erläuterten die Deutung der Blitze. Schon zu dieser Zeit (zwischen 800 und 600 v. Chr.) wurden Blitze kategorisiert und beobachtet.

Die Germanen deuteten den Blitz als sichtbares Zeichen dafür, dass Thor (Donar) seinen Hammer zur Erde geschleudert hatte.

Bei den baltischen Völkern war es der Gewittergott Perkūnas.

Blitze auf anderen Planeten
Auch auf anderen Planeten unseres Sonnensystems, zum Beispiel auf der Venus oder dem Jupiter, treten Blitze auf. Voraussetzung dafür ist eine dichte Atmosphäre.

Lightning is a massive electrostatic discharge between the electrically charged regions within clouds or between a cloud and the surface of a planet. The charged regions within the atmosphere temporarily equalize themselves through a lightning flash, commonly referred to as a strike if it hits an object on the ground. There are three primary types of lightning; from a cloud to itself (intra-cloud or IC); from one cloud to another cloud (CC) and between a cloud and the ground (CG). Although lightning is always accompanied by the sound of thunder, distant lightning may be seen but may be too far away for the thunder to be heard.

On Earth, the lightning frequency is approximately 40–50 times a second or nearly 1.4 billion flashes per year[1] and the average duration is 30 microseconds.[2]

Many factors affect the frequency, distribution, strength and physical properties of a "typical" lightning flash in a particular region of the world. These factors include ground elevation, latitude, prevailing wind currents, relative humidity, proximity to warm and cold bodies of water, etc. To a certain degree, the ratio between IC, CC and CG lightning may also vary by season in middle latitudes.

Because human beings are terrestrial and most of their possessions are on the Earth, where lightning can damage or destroy them, CG lightning is the most studied and best understood of the three types, even though IC and CC are more common types of lightning. Lightning’s relative unpredictability limits a complete explanation of how or why it occurs, even after hundreds of years of scientific investigation.

A typical cloud to ground lightning flash culminates in the formation of an electrically conducting plasma channel through the air in excess of 5 kilometres (3.1 mi) tall, from within the cloud to the ground’s surface. The actual discharge is the final stage of a very complex process.[3] At its peak, a typical thunderstorm produces three or more strikes to the Earth per minute.[4]

Lightning primarily occurs when warm air is mixed with colder air masses, resulting in atmospheric disturbances necessary for polarizing the atmosphere.[citation needed] However, it can also occur during dust storms, forest fires, tornadoes, volcanic eruptions, and even in the cold of winter, where the lightning is known as thundersnow.[5][6] Hurricanes typically generate some lightning, mainly in the rainbands as much as 160 kilometres (99 mi) from the center.[7][8][9]

The science of lightning is called fulminology, and the fear of lightning is called astraphobia.

Lightning is not distributed evenly around the planet, as seen in the image on the right.

About 70% of lightning occurs over land in the tropics where atmospheric convection is the greatest. This occurs from both the mixture of warmer and colder air masses, as well as differences in moisture concentrations, and it generally happens at the boundaries between them. The flow of warm ocean currents past drier land masses, such as the Gulf Stream, partially explains the elevated frequency of lightning in the Southeast United States. Because the influence of small or absent land masses in the vast stretches of the world’s oceans limits the differences between these variants in the atmosphere, lightning is notably less frequent there than over larger landforms. The North and South Poles are limited in their coverage of thunderstorms and therefore result in areas with the least amount of lightning.

In general, cloud-to-ground (CG) lightning flashes account for only 25% of all total lightning flashes worldwide. Since the base of a thunderstorm is usually negatively charged, this is where most CG lightning originates. This region is typically at the elevation where freezing occurs within the cloud. Freezing, combined with collisions between ice and water, appears to be a critical part of the initial charge development and separation process. During wind-driven collisions, ice crystals tend to develop a positive charge, while a heavier, slushy mixture of ice and water (called graupel) develops a negative charge. Updrafts within a storm cloud separate the lighter ice crystals from the heavier graupel, causing the top region of the cloud to accumulate a positive space charge while the lower level accumulates a negative space charge.

Because the concentrated charge within the cloud must exceed the insulating properties of air, and this increases proportionally to the distance between the cloud and the ground, the proportion of CG strikes (versus cloud-to-cloud (CC) or in-cloud (IC) discharges) becomes greater when the cloud is closer to the ground. In the tropics, where the freezing level is generally higher in the atmosphere, only 10% of lightning flashes are CG. At the latitude of Norway (around 60° North latitude), where the freezing elevation is lower, 50% of lightning is CG.[10][11]

Lightning is usually produced by cumulonimbus clouds, which have bases that are typically 1–2 km (0.6-1.25 miles) above the ground and tops up to 15 km (9.3 mi) in height.

On Earth, the place where lightning occurs most often is near the small village of Kifuka in the mountains of the eastern Democratic Republic of the Congo,[12] where the elevation is around 975 m (3,200 ft). On average, this region receives 158 lightning strikes per 1 square kilometer (0.39 sq mi) per year.[13] Other lightning hotspots include Catatumbo lightning in Venezuela, Singapore,[14] Teresina in northern Brazil,[15] and "Lightning Alley" in Central Florida.

In order for an electrostatic discharge to occur, two things are necessary: 1) a sufficiently high electric potential between two regions of space must exist; and 2) a high-resistance medium must obstruct the free, unimpeded equalization of the opposite charges.

It is well understood that during a thunderstorm there is charge separation and aggregation in certain regions of the cloud; however the exact processes by which this occurs are not fully understood;[18] Main article: thunderstorm
The atmosphere provides the electrical insulation, or barrier, that prevents free equalization between charged regions of opposite polarity. This is overcome by "lightning", a complex process referred to as the lightning "flash".
As a thundercloud moves over the surface of the Earth, an equal electric charge, but of opposite polarity, is induced on the Earth’s surface underneath the cloud. The induced positive surface charge, when measured against a fixed point, will be small as the thundercloud approaches, increasing as the center of the storm arrives and dropping as the thundercloud passes. The referential value of the induced surface charge could be roughly represented as a bell curve.
The oppositely charged regions create an electric field within the air between them. This electric field varies in relation to the strength of the surface charge on the base of the thundercloud – the greater the accumulated charge, the higher the electrical field.

The best studied and understood form of lightning is cloud to ground (CG). Although more common, intracloud (IC) and cloud to cloud (CC) flashes are very difficult to study given there are no "physical" points to monitor inside the clouds. Also, given the very low probability lightning will strike the same point repeatedly and consistently, scientific inquiry is difficult at best even in the areas of high CG frequency. As such, knowing flash propagation is similar amongst all forms of lightning, the best means to describe the process is through an examination of the most studied form, cloud to ground.
In a process not well understood, a channel of ionized air, called a "leader", is initiated from a negatively charged region in the thundercloud. Leaders are electrically conductive channels of partially ionized gas that travel away from a region of dense charge. Negative leaders propagate away from densely charged region of negative charge, and positive leaders propagate from positively charged regions.

The positively and negatively charged leaders proceed in opposite directions, positive upwards within the cloud and negative towards the earth. Both ionic channels proceed, in their respective directions, in a number of successive spurts. Each leader "pools" ions at the leading tips, shooting out one or more new leaders, momentarily pooling again to concentrate charged ions, then shooting out another leader.

Leaders often split, forming branches in a tree-like pattern.[19] In addition, negative leaders travel in a discontinuous fashion. The resulting jerky movement of these "stepped leader(s)" can be readily observed in slow-motion videos of negative leaders as they head toward ground prior to a negative CG lightning strike. The negative leaders continue to propagate and split as they head downward, often speeding up as they get closer to the Earth’s surface.

About 90% of ionic channel lengths between "pools" are approximately 45 m (148 ft) in length.[20] The establishment of the ionic channel takes a comparatively long amount of time (hundreds of milliseconds) in comparison to resulting discharge which occurs within a few microseconds. The electric current needed to establish the channel, measured in the tens or hundreds of amperes, is dwarfed by subsequent currents during the actual discharge.

Initiation of the outward leaders is not well understood. The electric field strength within the thundercloud is not typically large enough to initiate this process by itself.[21] Many hypotheses have been proposed. One theory postulates that showers of relativistic electrons are created by cosmic rays and are then accelerated to higher velocities via a process called runaway breakdown. As these relativistic electrons collide and ionize neutral air molecules, they initiate leader formation. Another theory invokes locally enhanced electric fields being formed near elongated water droplets or ice crystals.[22] Percolation theory, especially for the case of biased percolation,[23][clarification needed] describes random connectivity phenomena, which produce an evolution of connected structures similar to that of lightning strikes.

When a stepped leader approaches the ground, the presence of opposite charges on the ground enhances the strength of the electric field. The electric field is strongest on grounded objects whose tops are closest to the base of the thundercloud, such as trees and tall buildings. If the electric field is strong enough, a positively charged ionic channel, called a positive or upward streamer, can develop from these points. This was first theorized by Heinz Kasemir.[24][25]

As negatively charged leaders approach, increasing the localized electric field strength, grounded objects already experiencing corona discharge exceed a threshold and form upward streamers.

Once a downward leader connects to an available upward leader, a process referred to as attachment, a low-resistance path is formed and discharge may occur. Photographs have been taken on which unattached streamers are clearly visible. The unattached downward leaders are also visible in branched lightning, none of which are connected to the earth, although it may appear they are.

Once a conductive channel bridges the ionized air between the negative charges in the cloud and the positive surface charges below, the flood gates are opened, and a massive electrical discharge follows. Neutralization of positive surface charges occurs first. An enormous current of positive charges races up the ionic channel towards the thundercloud. This is the ‘return stroke’ and it is the most luminous and noticeable part of the lightning discharge.

High-speed photography showing different parts of a lightning flash during the discharge process as seen in Toulouse, France.
The positive charges in the ground region surrounding the lightning strike are neutralized within microseconds as they race inward to the strike point, up the plasma channel, and back to the cloud. A huge surge of current creates large radial voltage differences along the surface of the ground. Called step potentials, they are responsible for more injuries and deaths than the strike itself.[citation needed] Electricity follows the path of least resistance. A portion of the return stroke current will often preferentially flow through one leg and out another, electrocuting an unlucky human or animal standing near the point where the lightning strikes.

The electrical current of the return stroke averages 30 kiloamperes for a typical negative CG flash, often referred to as "negative CG" lightning. In some cases, a positive ground to cloud (GC) lightning flash may originate from a positively charged region on the ground below a storm. These discharges normally originate from the tops of very tall structures, such as communications antennas. The rate at which the return stroke current travels has been found to be around 1×108 m/s.[27]

The massive flow of electrical current occurring during the return stroke combined with the rate at which it occurs (measured in microseconds) rapidly superheats the completed leader channel, forming a highly electrically-conductive plasma channel. The core temperature of the plasma during the return stroke may exceed 50,000 K, causing it to brilliantly radiate with a blue-white color. Once the electrical current stops flowing, the channel cools and dissipates over tens or hundreds of milliseconds, often disappearing as fragmented patches of glowing gas. The nearly instantaneous heating during the return stroke causes the air to explosively expand, producing a powerful shock wave that is heard as thunder.

Re-strike

High-speed videos (examined frame-by-frame) show that most negative CG lightning flashes are made up of 3 or 4 individual strokes, though there may be as many as 30.[28]

Each re-strike is separated by a relatively large amount of time, typically 40 to 50 milliseconds, as other charged regions in the cloud are discharged in subsequent strokes. Re-strikes often cause a noticeable "strobe light" effect.

Each successive stroke is preceded by intermediate dart leader strokes that have a faster rise time but lower amplitude than the initial return stroke. Each subsequent stroke usually re-uses the discharge channel taken by the previous one, but the channel may be offset from its previous position as wind displaces the hot channel.[30]

Transient currents during the flash

The electrical current within a typical negative CG lightning discharge rises very quickly to its peak value in 1–10 microseconds, then decays more slowly over 50–200 microseconds. The transient nature of the current within a lightning flash results in several phenomena that need to be addressed in the effective protection of ground-based structures. Rapidly changing currents tend to travel on the surface of a conductor. This is called skin effect, unlike direct currents "flowing through" the entire conductor like water through a hose. Hence, conductors used in the protection of facilities tend to be multi-stranded small wires woven together, that increases the surface area inversely in proportion to cross-sectional area.

The rapidly changing currents also create electromagnetic pulses (EMPs) that radiate outward from the ionic channel. This is a characteristic of all electrical sparks. The radiated pulses rapidly weaken as their distance from the origin increases. However if they pass over conductive elements, for instance electrical wires, communication lines or metallic pipes, they may induce a current which travels outward to its termination. This is the "surge" that, more often than not, results in the destruction of delicate electronics, electrical appliances or electric motors. Devices known as surge protectors (SPD) or transient voltage surge suppressors (TVSS) attached in series with these conductors can detect the lightning flash’s transient [irregular] current, and through an alteration of its physical properties, route the spike to an attached earthing ground, thereby protecting the equipment from damage.
There are three primary types of lightning, defined by what is at the "ends" of a flash channel. They are intracloud (IC), which occurs within a single thundercloud unit; cloud to cloud (CC), which starts and ends between two different "functional" thundercloud units; and cloud to ground, that primarily originates in the thundercloud and terminates on an Earth surface, but may also occur in the reverse direction, that is ground to cloud. There are variations of each type, such as "positive" versus "negative" CG flashes, that have different physical characteristics common to each which can be measured. Different common names used to describe a particular lightning event may be attributed to the same or different events.

Cloud-to-ground is the best known and third most common type of lightning. It is the best understood of all forms because it allows for scientific study given it terminates on a physical object, namely the Earth, and lends itself to being measured by instruments. Of the three primary types of lightning, it poses the greatest threat to life and property since it terminates or "strikes" the Earth. Cloud-to-ground (CG) lightning is a lightning discharge between a thundercloud and the ground. It is usually negative in polarity and is usually initiated by a stepped leader moving down from the cloud.

Ground-to-cloud lightning is an artificially initiated, or triggered, category of CG flashes. Triggered lightning originates from tall, positively-charged structures on the ground, such as towers on mountains that have been inductively charged by the negative cloud layer above.

CG lightning can occur with both positive and negative polarity. The polarity refers to the polarity of the charge in the region that originated the lightning leaders. An average bolt of negative lightning carries an electric current of 30,000 amperes (30 kA), and transfers 15 coulombs of electric charge and 500 megajoules of energy. Large bolts of lightning can carry up to 120 kA and 350 coulombs

Unlike the far more common "negative" lightning, positive lightning originates from the positively charged top of the clouds (generally anvil clouds) rather than the lower portion of the storm. Leaders form in the anvil of the cumulonimbus and may travel horizontally for several miles before veering towards the ground. A positive lightning bolt can strike anywhere within several miles of the anvil of the thunderstorm, often in areas experiencing clear or only slightly cloudy skies; they are also known as "bolts from the blue" for this reason. Positive lightning typically makes up less than 5% of all lightning strikes.[33] Because of the much greater distance to ground, the positively-charged region can develop considerably larger levels of charge and voltages than the negative charge regions in the lower part of the cloud. Positive lightning bolts are considerably hotter and longer than negative lightning. They can develop six to ten times the amount of charge and voltage of a negative bolt and the discharge current may last ten times longer.[34] A bolt of positive lightning may carry an electric current of 300 kA and the potential at the top of the cloud may exceed a billion volts — about 10 times that of negative lightning.[35] During a positive lightning strike, huge quantities of extremely low frequency (ELF) and very low frequency (VLF) radio waves are generated.[36] As a result of their greater power, as well as lack of warning, positive lightning strikes are considerably more dangerous. At the present time, aircraft are not designed to withstand such strikes, since their existence was unknown at the time standards were set, and the dangers unappreciated until the destruction of a glider in 1999.[37] The standard in force at the time of the crash, Advisory Circular AC 20-53A, was replaced by Advisory Circular AC 20-53B in 2006,[38] however it is unclear whether adequate protection against positive lightning was incorporated.[39][40] Positive lightning is also now believed to have been responsible for the 1963 in-flight explosion and subsequent crash of Pan Am Flight 214, a Boeing 707.[citation needed] Aircraft operating in U.S. airspace have been required to be equipped with static discharge wicks. Although their primary function is to mitigate radio interference due to static buildup through friction with the air, in the event of a lightning strike, a plane is designed to conduct the excess electricity through its skin and structure to the wicks to be safely discharged back into the atmosphere. These measures, however, may be insufficient for positive lightning.[41] Positive lightning has also been shown to trigger the occurrence of upper atmosphere lightning between the tops of clouds and the ionosphere. Positive lightning tends to occur more frequently in winter storms, as with thundersnow, and in the dissipation stage of a thunderstorm.

Lightning discharges may occur between areas of cloud without contacting the ground. When it occurs between two separate clouds it is known as inter-cloud lightning, and when it occurs between areas of differing electric potential within a single cloud it is known as intra-cloud lightning. Intra-cloud lightning is the most frequently occurring type.[42]

Intra-cloud lightning most commonly occurs between the upper anvil portion and lower reaches of a given thunderstorm. This lightning can sometimes be observed at great distances at night as so-called "heat lightning". In such instances, the observer may see only a flash of light without hearing any thunder. The "heat" portion of the term is a folk association between locally experienced warmth and the distant lightning flashes.

Another terminology used for cloud–cloud or cloud–cloud–ground lightning is "Anvil Crawler", due to the habit of the charge typically originating from beneath or within the anvil and scrambling through the upper cloud layers of a thunderstorm, normally generating multiple branch strokes which are dramatic to witness. These are usually seen as a thunderstorm passes over the observer or begins to decay. The most vivid crawler behavior occurs in well developed thunderstorms that feature extensive rear anvil shearing.

A team of physicists, including Joseph Dwyer at Florida Tech have developed a model of how thunderstorms produce high energy radiation. In this model, instead of lightning, thunderstorms can also result in an electrical breakdown of high-energy electrons and the antimatter equivalent, positrons. The interaction between the electrons and positrons creates explosive growth in some of these high energy particles emitting the observed terrestrial gamma-ray flashes and rapidly discharging the thundercloud, sometimes even faster than normal lightning. Even though abundant gamma-rays are emitted by this process, with little or no visible light, it creates an electrical breakdown within the storms now called "dark lightning" by the scientific community.

Ball lightning may be an atmospheric electrical phenomenon, the physical nature of which is still controversial. The term refers to reports of luminous, usually spherical objects which vary from pea-sized to several meters in diameter.[45] It is sometimes associated with thunderstorms, but unlike lightning flashes, which last only a fraction of a second, ball lightning reportedly lasts many seconds. Ball lightning has been described by eyewitnesses but rarely recorded by meteorologists.[46][47] Scientific data on natural ball lightning is scarce owing to its infrequency and unpredictability. The presumption of its existence is based on reported public sightings, and has therefore produced somewhat inconsistent findings.
Bead lightning refers to the decaying stage of a lightning channel in which the luminosity of the channel breaks up into segments. Nearly every lightning discharge will exhibit beading as the channel cools immediately after a return stroke, sometimes referred to as the lightning’s ‘bead-out’ stage. ‘Bead lightning’ is more properly a stage of a normal lightning discharge rather than a type of lightning in itself. Beading of a lightning channel is usually a small-scale feature, and therefore is often only apparent when the observer/camera is close to the lightning.[48] Dry lightning is used in Australia, Canada and the United States for lightning that occurs with no precipitation at the surface. This type of lightning is the most common natural cause of wildfires.[49] Pyrocumulus clouds produce lightning for the same reason that it is produced by cumulonimbus clouds.
Forked lightning is cloud-to-ground lightning that exhibits branching of its path.
Heat lightning is a lightning flash that appears to produce no discernible thunder because it occurs too far away for the thunder to be heard. The sound waves dissipate before they reach the observer.[50] Ribbon lightning occurs in thunderstorms with high cross winds and multiple return strokes. The wind will blow each successive return stroke slightly to one side of the previous return stroke, causing a ribbon effect.[citation needed] Rocket lightning is a form of cloud discharge, generally horizontal and at cloud base, with a luminous channel appearing to advance through the air with visually resolvable speed, often intermittently.[51] Sheet lightning refers to cloud-to-cloud lightning that exhibits a diffuse brightening of the surface of a cloud, caused by the actual discharge path being hidden or too far away. The lightning itself cannot be seen by the spectator, so it appears as only a flash, or a sheet of light. The lightning may be too far away to discern individual flashes.
Staccato lightning is a cloud-to-ground lightning (CG) strike which is a short-duration stroke that (often but not always) appears as a single very bright flash and often has considerable branching.[52] These are often found in the visual vault area near the mesocyclone of rotating thunderstorms and coincides with intensification of thunderstorm updrafts. A similar cloud-to-cloud strike consisting of a brief flash over a small area, appearing like a blip, also occurs in a similar area of rotating updrafts.[53] Superbolts are bolts of lightning around a hundred times brighter than normal. On Earth, one in a million lightning strikes is a superbolt.[citation needed] Sympathetic lightning refers to the tendency of lightning to be loosely coordinated across long distances. Discharges can appear in clusters when viewed from space.
Clear-air lightning is used in Australia, Canada and the United States to describe lightning that occurs with no apparent cloud close enough to have produced it. In the U.S. and Canadian Rockies, a thunderstorm can be in an adjacent valley and not observable from the valley where the lightning bolt strikes, either visually or audibly. European and Asian mountainous areas experience similar events. Also in areas such as sounds, large lakes or open plains, when the storm cell is on the near horizon (within 26 kilometres (16 mi)) there may be some distant activity, a strike can occur and as the storm is so far away, the strike is referred to as clear-air.
Objects struck by lightning experience heat and magnetic forces of great magnitude. The heat created by lightning currents traveling through a tree may vaporize its sap, causing a steam explosion that bursts the trunk. As lightning travels through sandy soil, the soil surrounding the plasma channel may melt, forming tubular structures called fulgurites. Humans or animals struck by lightning may suffer severe injury or even death due to internal organ and nervous system damage. Buildings or tall structures hit by lightning may be damaged as the lightning seeks unintended paths to ground. By safely conducting a lightning strike to ground, a lightning protection system can greatly reduce the probability of severe property damage.

Because the electrostatic discharge of terrestrial lightning superheats the air to plasma temperatures along the length of the discharge channel in a short duration, kinetic theory dictates gaseous molecules undergo a rapid increase in pressure and thus expand outward from the lightning creating a shock wave audible as thunder. Since the sound waves propagate not from a single point source but along the length of the lightning’s path, the sound origin’s varying distances from the observer can generate a rolling or rumbling effect. Perception of the sonic characteristics is further complicated by factors such as the irregular and possibly branching geometry of the lightning channel, by acoustic echoing from terrain, and by the typically multiple-stroke characteristic of the lightning strike.

Light travels at about 300,000,000 m/s. Sound travels through air at about 340 m/s. An observer can approximate the distance to the strike by timing the interval between the visible lightning and the audible thunder it generates. A lightning flash preceding its thunder by five seconds would be about one mile (1.6 km) (5×340 m) distant. A flash preceding thunder by three seconds is about one kilometer (0.62 mi) (3×340 m) distant. Consequently, a lightning strike observed at a very close distance will be accompanied by a sudden clap of thunder, with almost no perceptible time lapse, possibly accompanied by the smell of ozone

The production of X-rays by a bolt of lightning was theoretically predicted as early as 1925[54] but no evidence was found until 2001/2002,[55][56][57] when researchers at the New Mexico Institute of Mining and Technology detected X-ray emissions from an induced lightning strike along a grounded wire trailed behind a rocket shot into a storm cloud. In the same year University of Florida and Florida Tech researchers used an array of electric field and X-ray detectors at a lightning research facility in North Florida to confirm that natural lightning makes X-rays in large quantities during the propagation of stepped leaders. The cause of the X-ray emissions is still a matter for research, as the temperature of lightning is too low to account for the X-rays observed.[58][59]

A number of observations by space-based telescopes have revealed even higher energy gamma ray emissions, the so-called terrestrial gamma-ray flashes (TGFs). These observations pose a challenge to current theories of lightning, especially with the recent discovery of the clear signatures of antimatter produced in lightning

Quelle:
en.wikipedia.org/wiki/Lightning
de.wikipedia.org/wiki/Blitz

Posted by !!! Painting with Light !!! #schauer on 2014-08-02 20:54:48

Tagged: , Schauer , Christian , Storm , Weather , Lightning , Wetter , Gewitter , Bayern , Bavaria , River , Fluß , Deutschland , Germany , Fabrik , Factory , Gebäude , Building , Stormy , Parkplatz , Thunder , Donner , Beruf , Professional , Occupation , Latern , Licht , Light , Baum , Tree , Lot , Car , Auto , Asphalt , Strasse , Street , Night , Nacht , Nuit , Noir , Rain , Regen , Wind , Sturm , Buero , Arbeit , Worker , Work , Zahnrad , Getriebe , Achse , Axle , World , Welt , Konzern , Beam , Painting , with , Long , Exposure , langzeit , Belichtung , Natur , Nature , Landschaft , Landscape , Gras , Bad , Mirrow , Spiegelung , Spiegel , Park , Feuerwehr , Unwetter , Feuerwerk , Firework