Gravel and dust – a favourite road

Gravel and dust - a favourite road

Two mornings ago, on 30 June 2019, I woke up earlier than usual. Once I was on my computer, I checked the weather forecast and saw raindrop icons in the forecast for the next week, but the 30th was for sun. I knew what I had to do! Luckily, I had a tank full of gas, so I grabbed both cameras and a snack or two, and headed out the door. I must be the only person who hadn’t been to Kananaskis recently and taken photos of the tiny Pikas (Rock Rabbits), and that was my destination.

This was a long weekend for Canada Day, and my plan had been to keep off the roads, as I was sure they would be busy, making it more difficult to stop whenever I wanted, to take a photo or two. However, when I saw the weather forecast, it changed my mind. Sunshine, blue sky with clouds, made it a perfect day to be out – I’m sure you agreed, Bonnie : )

A day in Kananaskis is always great, but sometimes ‘great’ turns out to be fantastic! Can’t believe how lucky I was, not just in the mountains, but on the journey there and, at the end of the day, calling in at my ‘usual’ area closer to home.

I suspect the Pika is most people’s favourite – around 6 inches long and almost impossible to see against the mountainside of broken rocks that are the same colour as the Pika’s fur. Starting to believe that maybe I was going to be out of luck, the first one appeared, racing in and out and over and between the endless, sharp rocks. Take your eyes off the animal and you stand a good chance of not being able to find it again. Then a second one appeared, a baby. It perched itself on top of a rock and simply stayed there for a few minutes. Several of my photos show the eyes closing slightly. However, eventually it did move, and off it went. When it appeared not too far away, I caught sight of it and thought at first it was a mouse, ha. So tiny!

While I was searching for a Pika, a herd of Bighorn Sheep had come down the massive mountain side and, as they usually do, gathered right in the middle of the road to lick salt left by vehicles. After quite a time, there was an almighty BOOM that startled me and a handful of others. We hadn’t noticed a Park’s truck arrive, armed with ‘bangers’ to make the Sheep move from the road. Once the Park’s person had left, the Sheep returned to the road. There were several young ones along with the females.

It will take me ages to go through my photos, especially having to combine two cameras, but lots of images can wait till winter. More important, to me, is to continue editing and posting the remaining Texas photos, if/when I get time to do so.

Posted by annkelliott on 2019-07-02 21:08:25

Tagged: , Alberta , Canada , SW of Calgary , on way to Kananaskis , landscape , scenery , hills , rolling hills , mountains , foothills , field , farm , road , backroad , gravel , undulating , trees , outdoor , summer , 30 June 2019 , Canon , SX60 , Canon SX60 , Powershot , annkelliott , Anne Elliott

CINEMATOGRAPHER IN A FIELD – EASTERN COLORADO

CINEMATOGRAPHER IN A FIELD - EASTERN COLORADO

Photo by Linden Hudson (amateur photog)

Who is Linden Hudson?

CLASSICBANDS DOT COM said: “According to former roadie David Blayney in his book SHARP DRESSED MEN: sound engineer Linden Hudson co-wrote much of the material on the ZZ Top ELIMINATOR album.” (end quote)

(ZZ Top never opted to give Linden credit, which would have been THE decent thing to do. It would have helped Linden’s career as well. The band and management worked ruthlessly to take FULL credit for the hugely successful album which Linden had spent a good deal of time working on. Linden works daily to tell this story. Also, the band did not opt to pay Linden, they worked to keep all the money and they treated Linden like dirt. It was abuse. Linden launched a limited lawsuit, brought about using his limited resources which brought limited results and took years. No one should treat the co-writer of their most successful album like this. It’s just deeply fucked up.)
+++
Hear the original ZZ Top ELIMINATOR writing/rehearsal tapes made by Linden Hudson and Billy Gibbons at: www.flickr.com/photos/152350852@N02/35711891332/in/photol...
+++
Read Linden’s story of the making of the super-famous ZZ Top ELIMINATOR album at: www.flickr.com/people/152350852@N02/
+++
LICKLIBRARY DOT COM (2013 Billy Gibbons interview) ZZ TOP’S BILLY GIBBONS FINALLY ADMITTED: “the Eliminator sessions in 1983 were guided largely by another one of our associates, Linden Hudson, a gifted engineer, during the development of those compositions.” (end quote) (Gibbons admits this after 30 years, but offers Linden no apology or reparations for lack of credit/royalties)
+++
MUSICRADAR DOT COM (2013 interview with ZZ Top’s guitarist Billy Gibbons broke 30 years of silence about Linden Hudson introducing synthesizers into ZZ Top’s sound.) Gibbons said: “This was a really interesting turning point. We had befriended somebody who would become an influential associate, a guy named Linden Hudson. He was a gifted songwriter and had production skills that were leading the pack at times. He brought some elements to the forefront that helped reshape what ZZ Top were doing, starting in the studio and eventually to the live stage. Linden had no fear and was eager to experiment in ways that would frighten most bands. But we followed suit, and the synthesizers started to show up on record.” (once again, there was no apology from ZZ Top or Billy Gibbons after this revelation).
+++
TEXAS MONTHLY MAGAZINE (Dec 1996, By Joe Nick Patoski): "Linden Hudson floated the notion that the ideal dance music had 124 beats per minute; then he and Gibbons conceived, wrote, and recorded what amounted to a rough draft of an album before the band had set foot inside Ardent Studios."
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP (By David Blayney) : "Probably the most dramatic development in ZZ Top recording approaches came about as Eliminator was constructed. What had gone on before evolutionary; this change was revolutionary. ZZ Top got what amounted to a new bandsman (Linden) for the album, unknown to the world at large and at first even to Dusty and Frank."
+++
CNET DOT COM: (question posed to ZZ Top): Sound engineer Linden Hudson was described as a high-tech music teacher on your highly successful "Eliminator" album. How much did the band experiment with electronic instruments prior to that album?
+++
THE HOUSTON CHRONICLE, MARCH 2018: "Eliminator" had a tremendous impact on us and the people who listen to us," says ZZ Top’s bass player. Common band lore points to production engineer Linden Hudson suggesting that 120 beats per minute was the perfect rock tempo, or "the people’s tempo" as it came to be known.
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP by David Blayney: (page 227): "…the song LEGS Linden Hudson introduced the pumping synthesizer effect."
+++
(Search Linden Hudson in the various ZZ Top Wikipedia pages which are related to the ELIMINATOR album and you will find bits about Linden. Also the main ZZ Top Wikipedia page mentions Linden. He’s mentioned in at least 7 ZZ Top related Wikipedia pages.)
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP By David Blayney: "Linden found himself in the position of being Billy’s (Billy Gibbons, ZZ Top guitarist) closest collaborator on Eliminator. In fact, he wound up spending more time on the album than anybody except Billy. While the two of them spent day after day in the studio, they were mostly alone with the equipment and the ideas."
+++
FROM THE BOOK: BEER DRINKERS & HELL RAISERS: A ZZ TOP GUIDE (By Neil Daniels, released 2014): "Hudson reportedly had a significant role to play during the planning stages of the release (ELIMINATOR)."
+++
FROM THE BOOK: ZZ TOP – BAD AND WORLDWIDE (ROLLING STONE PRESS, WRITTEN BY DEBORAH FROST): "Linden was always doing computer studies. It was something that fascinated him, like studio technology. He thought he might understand the components of popular songs better if he fed certain data into his computer. It might help him understand what hits (song releases) of any given period share. He first found out about speed; all the songs he studied deviated no more than one beat from 120 beats per minute. Billy immediately started to write some songs with 120 beats per minute. Linden helped out with a couple, like UNDER PRESSURE and SHARP DRESSED MAN. Someone had to help Billy out. Dusty and Frank didn’t even like to rehearse much. Their studio absence wasn’t really a problem though. The bass and drum parts were easily played with a synthesizer or Linn drum machine." (end quote)
+++
FROM THE BOOK: "SHARP DRESSED MEN – ZZ TOP" BY DAVID BLAYNEY: "After his quantitative revelations, Linden informally but instantly became ZZ Top’s rehearsal hall theoretician, producer, and engineer." (end quote)
+++
FROM THE BOOK: "ZZ TOP – BAD AND WORLDWIDE" (ROLLING STONE PRESS, BY DEBORAH FROST): "With the release of their ninth album, ELIMINATOR, in 1983, these hairy, unlikely rock heroes had become a pop phenomenon. This had something to do with the discoveries of a young preproduction engineer (Linden Hudson) whose contributions, like those of many associated with the band over the years, were never acknowledged."
+++
FROM THE BOOK: ​SHARP DRESSED MEN – ZZ TOP (By DAVID BLAYNEY) : "The integral position Linden occupied in the process of building El​iminator was demonstrated eloquently in the case of song Under Pressure. Billy and Linden, the studio wizards, did the whole song all in one afternoon without either the bass player or drummer even knowing it had been written and recorded on a demo tape. Linden synthesized the bass and drums and helped write the lyrics; Billy did the guitars and vocals."
+++
FROM THE BOOK: "TRES HOMBRES – THE STORY OF ZZ TOP" BY DAVID SINCLAIR (Writer for the Times Of London): "Linden Hudson, the engineer/producer who lived at Beard’s house (ZZ’s drummer) had drawn their attention to the possibilities of the new recording technology and specifically to the charms of the straight drumming pattern, as used on a programmed drum machine. On ELIMINATOR ZZ Top unveiled a simple new musical combination that cracked open a vast worldwide market.
+++
FROM THE BOOK: "SHARP DRESS MEN – ZZ TOP" BY DAVID BLAYNEY: "ELIMINATOR went on to become a multi-platinum album, just as Linden had predicted when he and Billy were setting up the 124-beat tempos and arranging all the material. Rolling Stone eventually picked the album as number 39 out of the top 100 of the 80’s. Linden Hudson in a fair world shoud have had his name all over ELIMINATOR and gotten the just compensation he deserved. Instead he got ostracized."
+++
FROM THE BOOK: ​SHARP DRESSED MEN – ZZ TOP by DAVID BLAYNEY: "He (Linden) went back with the boys to 1970 when he was working as a radio disc jocky aliased Jack Smack. He was emcee for a show ZZ did around that time, and even sang an encore tune with the band, perhaps the only person ever to have that honor." (side note: this was ZZ Top’s very first show).
+++
FROM THE BOOK: "SHARP DRESSED MEN – ZZ TOP" BY DAVID BLAYNEY: "Linden remained at Frank’s (ZZ Top drummer) place as ZZ’s live-in engineer throughout the whole period of ELIMINATOR rehearsals, and was like one of the family… as he (Linden) worked at the controls day after day, watching the album (ELIMINATOR) take shape, his hopes for a big step forward in his production career undoubtably soared. ELIMINATOR marked the first time that ZZ Top was able to rehearse an entire album with the recording studio gadgetry that Billy so loved. With Linden Hudson around all the time, it also was the first time the band could write, rehearse, and record with someone who knew the men and the machines. ZZ Top was free to go musically crazy, but also musically crazy like a fox. Linden made that possible too."
+++
FROM THE BOOK "ZZ TOP – BAD AND WORLDWIDE" (ROLLING STONE PRESS, BY DEBORAH FROST, WRITER FOR ROLLING STONE MAGAZINE): "… SHARP DRESSED MAN which employed Hudson’s 120 beat-per-minute theory. The feel, the enthusiasm, the snappy beat and crisp clean sound propelled ELIMINATOR into the ears and hearts of 5 million people who previously could have cared less about the boogie band of RIO GRANDE MUD."
+++
THE GREATEST ROCK REBRAND OF ALL TIME (by Jason Miller): "Sound engineer Linden Hudson researched the tempos at which the most popular rock tracks in the charts had been recorded. His data showed that there was something very special about 120 beats to a minute. Gibbons decided to record pretty much the whole of ZZ Top’s new album at that tempo. The result? 1983’s Eliminator. It was named after Gibbons’ Ford Coupé; it had been created through a unique combination of creative collaboration and data mining. And it was about to take the world by storm."
+++
ULTIMATECLASSICROCK DOT COM: "This new melding of styles was encouraged by Hudson, who served as a kind of pre-producer for ​EL LOCO … … Hudson helped construct ZZ Top drummer Frank Beard’s home studio, and had lived with him for a time. That led to these initial sessions, and then a closer collaboration on 1983’s ​ELIMINATOR.
+++
FIREDOGLAKE DOT COM: "I like Billy Gibbons’ guitar tone quite a lot, but I lost all respect for them after reading how badly they fucked over Linden Hudson (the guy who was the brains behind their move to include synthesizers and co-wrote most of their career-defining Eliminator record)."
+++
EMAIL FROM A ZZ TOP FAN TO LINDEN (One Of Many): "I write you today about broken hearts, one is mine and one is for you. I have been a ZZ Top fan since I was 6 years old. I purchased ELIMINATOR vinyl from Caldors in Connecticut with the $20 my grandma gave me for my birthday. I will spare the #1 fan epic saga of tee shirts, harassing Noreen at the fan club via phone weekly for years, over 40 shows attended. Posters, non stop conversation about the time I have spent idolizing this band, but more Billy G, as he has seemed to break free of the Lone Wolf shackles and it became more clear this was his baby. In baseball I was Don Mattingly’s #1 fan, Hershel Walker in football, Billy Gibbons in music. What do these individuals have in common? They were role models. Not a DUI, not a spousal abuse, not a drug overdose, not a cheater. Until I read your web page. I read Blayney’s book around 1992 or so, I was in middle school and I was familiar with your name for a long time. I didn’t realize you suffered so greatly or that your involvement was so significant. It pains me to learn my idol not only cheated but did something so wrong to another being. I now know this is where tall tales and fun loving bullshit and poor morals and ethics are distinguished and where I would no longer consider myself to look up to Billy. I love to joke and I love credit but I have always prided myself on ethics and principles… I hold them dear. I wanted to say, the snippet of UNDER PRESSURE you played sounded very new wave and I may like it more than the finished product. Well that’s all. You have reached ZZ Top’s biggest fan and I can let others know. Bummer. Cheers and good luck. James."​
+++
VINYLSTYLUS DOT COM: Much of Eliminator was recorded at 124bpm, the tempo that considered perfect for dance music by the band’s associate Linden Hudson. An aspiring songwriter, former DJ and – at the time – drummer Frank Beard’s house-sitter, Hudson’s involvement in the recording of the album would come back to haunt them. Despite assisting Gibbons with the pre-production and developing of the material that would end up on both El Loco and Eliminator, his contribution wasn’t credited when either record was released.
+++
INFOMORY DOT COM: ‘Eliminator’ is a studio album of the American rock band ZZ Top. It was released on March 23, 1983 and topped the charts worldwide. Its lyrics were co-written by the band’s sound engineer Linden Hudson while the band denied it.
+++
MUSICMISCELLANEOUS DOT COM: (ELIMINATOR ALBUM):
However, despite the album credits bass-player Dusty Hill and drummer Frank Beard were replaced during the recording process by synthesizers and a drum machine programmed by engineer Linden Hudson, who allegedly co-wrote much of the music with Gibbons despite receiving no credit at the time. Gibbons would later say of Hudson that “he was a gifted songwriter and had production skills that were leading the pack at times. He brought some elements to the forefront that helped reshape what ZZ Top were doing”. Hudson did no less than show the band how to stay relevant in an age where three guys from Texas with long beards (except famously for Frank Beard) and blues licks were one of the last things the contemporary market was demanding.

Posted by lindenhud1 on 2017-09-21 21:08:49

Tagged: , camera , camera man , cinematographer , colorado , beautiful day , daytime , hay , rolls of hay , farm field , blue sky , cold , sunshine , farmland , golden_hay , beautiful_sky , america , usa , colorado_usa , east_colorado , eastern_colorado , pretty_scene , heartland , american_heartland , hay_rolls , farm , awesome_day

HORSES IN A BEAUTIFUL FIELD

HORSES IN A BEAUTIFUL FIELD

Photo by Linden Hudson (amateur photog)

Who is Linden Hudson?

CLASSICBANDS DOT COM said: “According to former roadie David Blayney in his book SHARP DRESSED MEN: sound engineer Linden Hudson co-wrote much of the material on the ZZ Top ELIMINATOR album.” (end quote)

(ZZ Top never opted to give Linden credit, which would have been THE decent thing to do. It would have helped Linden’s career as well. The band and management worked ruthlessly to take FULL credit for the hugely successful album which Linden had spent a good deal of time working on. Linden works daily to tell this story. Also, the band did not opt to pay Linden, they worked to keep all the money and they treated Linden like dirt. It was abuse. Linden launched a limited lawsuit, brought about using his limited resources which brought limited results and took years. No one should treat the co-writer of their most successful album like this. It’s just deeply fucked up.)
+++
Hear the original ZZ Top ELIMINATOR writing/rehearsal tapes made by Linden Hudson and Billy Gibbons at: www.flickr.com/photos/152350852@N02/35711891332/in/photol…
+++
Read Linden’s story of the making of the super-famous ZZ Top ELIMINATOR album at: www.flickr.com/people/152350852@N02/
+++
LICKLIBRARY DOT COM (2013 Billy Gibbons interview) ZZ TOP’S BILLY GIBBONS FINALLY ADMITTED: “the Eliminator sessions in 1983 were guided largely by another one of our associates, Linden Hudson, a gifted engineer, during the development of those compositions.” (end quote) (Gibbons admits this after 30 years, but offers Linden no apology or reparations for lack of credit/royalties)
+++
MUSICRADAR DOT COM (2013 interview with ZZ Top’s guitarist Billy Gibbons broke 30 years of silence about Linden Hudson introducing synthesizers into ZZ Top’s sound.) Gibbons said: “This was a really interesting turning point. We had befriended somebody who would become an influential associate, a guy named Linden Hudson. He was a gifted songwriter and had production skills that were leading the pack at times. He brought some elements to the forefront that helped reshape what ZZ Top were doing, starting in the studio and eventually to the live stage. Linden had no fear and was eager to experiment in ways that would frighten most bands. But we followed suit, and the synthesizers started to show up on record.” (once again, there was no apology from ZZ Top or Billy Gibbons after this revelation).
+++
TEXAS MONTHLY MAGAZINE (Dec 1996, By Joe Nick Patoski): "Linden Hudson floated the notion that the ideal dance music had 124 beats per minute; then he and Gibbons conceived, wrote, and recorded what amounted to a rough draft of an album before the band had set foot inside Ardent Studios."
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP (By David Blayney) : "Probably the most dramatic development in ZZ Top recording approaches came about as Eliminator was constructed. What had gone on before evolutionary; this change was revolutionary. ZZ Top got what amounted to a new bandsman (Linden) for the album, unknown to the world at large and at first even to Dusty and Frank."
+++
CNET DOT COM: (question posed to ZZ Top): Sound engineer Linden Hudson was described as a high-tech music teacher on your highly successful "Eliminator" album. How much did the band experiment with electronic instruments prior to that album?
+++
THE HOUSTON CHRONICLE, MARCH 2018: "Eliminator" had a tremendous impact on us and the people who listen to us," says ZZ Top’s bass player. Common band lore points to production engineer Linden Hudson suggesting that 120 beats per minute was the perfect rock tempo, or "the people’s tempo" as it came to be known.
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP by David Blayney: (page 227): "…the song LEGS Linden Hudson introduced the pumping synthesizer effect."
+++
(Search Linden Hudson in the various ZZ Top Wikipedia pages which are related to the ELIMINATOR album and you will find bits about Linden. Also the main ZZ Top Wikipedia page mentions Linden. He’s mentioned in at least 7 ZZ Top related Wikipedia pages.)
+++
FROM THE BOOK: SHARP DRESSED MEN – ZZ TOP By David Blayney: "Linden found himself in the position of being Billy’s (Billy Gibbons, ZZ Top guitarist) closest collaborator on Eliminator. In fact, he wound up spending more time on the album than anybody except Billy. While the two of them spent day after day in the studio, they were mostly alone with the equipment and the ideas."
+++
FROM THE BOOK: BEER DRINKERS & HELL RAISERS: A ZZ TOP GUIDE (By Neil Daniels, released 2014): "Hudson reportedly had a significant role to play during the planning stages of the release (ELIMINATOR)."
+++
FROM THE BOOK: ZZ TOP – BAD AND WORLDWIDE (ROLLING STONE PRESS, WRITTEN BY DEBORAH FROST): "Linden was always doing computer studies. It was something that fascinated him, like studio technology. He thought he might understand the components of popular songs better if he fed certain data into his computer. It might help him understand what hits (song releases) of any given period share. He first found out about speed; all the songs he studied deviated no more than one beat from 120 beats per minute. Billy immediately started to write some songs with 120 beats per minute. Linden helped out with a couple, like UNDER PRESSURE and SHARP DRESSED MAN. Someone had to help Billy out. Dusty and Frank didn’t even like to rehearse much. Their studio absence wasn’t really a problem though. The bass and drum parts were easily played with a synthesizer or Linn drum machine." (end quote)
+++
FROM THE BOOK: "SHARP DRESSED MEN – ZZ TOP" BY DAVID BLAYNEY: "After his quantitative revelations, Linden informally but instantly became ZZ Top’s rehearsal hall theoretician, producer, and engineer." (end quote)
+++
FROM THE BOOK: "ZZ TOP – BAD AND WORLDWIDE" (ROLLING STONE PRESS, BY DEBORAH FROST): "With the release of their ninth album, ELIMINATOR, in 1983, these hairy, unlikely rock heroes had become a pop phenomenon. This had something to do with the discoveries of a young preproduction engineer (Linden Hudson) whose contributions, like those of many associated with the band over the years, were never acknowledged."
+++
FROM THE BOOK: ​SHARP DRESSED MEN – ZZ TOP (By DAVID BLAYNEY) : "The integral position Linden occupied in the process of building El​iminator was demonstrated eloquently in the case of song Under Pressure. Billy and Linden, the studio wizards, did the whole song all in one afternoon without either the bass player or drummer even knowing it had been written and recorded on a demo tape. Linden synthesized the bass and drums and helped write the lyrics; Billy did the guitars and vocals."
+++
FROM THE BOOK: "TRES HOMBRES – THE STORY OF ZZ TOP" BY DAVID SINCLAIR (Writer for the Times Of London): "Linden Hudson, the engineer/producer who lived at Beard’s house (ZZ’s drummer) had drawn their attention to the possibilities of the new recording technology and specifically to the charms of the straight drumming pattern, as used on a programmed drum machine. On ELIMINATOR ZZ Top unveiled a simple new musical combination that cracked open a vast worldwide market.
+++
FROM THE BOOK: "SHARP DRESS MEN – ZZ TOP" BY DAVID BLAYNEY: "ELIMINATOR went on to become a multi-platinum album, just as Linden had predicted when he and Billy were setting up the 124-beat tempos and arranging all the material. Rolling Stone eventually picked the album as number 39 out of the top 100 of the 80’s. Linden Hudson in a fair world shoud have had his name all over ELIMINATOR and gotten the just compensation he deserved. Instead he got ostracized."
+++
FROM THE BOOK: ​SHARP DRESSED MEN – ZZ TOP by DAVID BLAYNEY: "He (Linden) went back with the boys to 1970 when he was working as a radio disc jocky aliased Jack Smack. He was emcee for a show ZZ did around that time, and even sang an encore tune with the band, perhaps the only person ever to have that honor." (side note: this was ZZ Top’s very first show).
+++
FROM THE BOOK: "SHARP DRESSED MEN – ZZ TOP" BY DAVID BLAYNEY: "Linden remained at Frank’s (ZZ Top drummer) place as ZZ’s live-in engineer throughout the whole period of ELIMINATOR rehearsals, and was like one of the family… as he (Linden) worked at the controls day after day, watching the album (ELIMINATOR) take shape, his hopes for a big step forward in his production career undoubtably soared. ELIMINATOR marked the first time that ZZ Top was able to rehearse an entire album with the recording studio gadgetry that Billy so loved. With Linden Hudson around all the time, it also was the first time the band could write, rehearse, and record with someone who knew the men and the machines. ZZ Top was free to go musically crazy, but also musically crazy like a fox. Linden made that possible too."
+++
FROM THE BOOK "ZZ TOP – BAD AND WORLDWIDE" (ROLLING STONE PRESS, BY DEBORAH FROST, WRITER FOR ROLLING STONE MAGAZINE): "… SHARP DRESSED MAN which employed Hudson’s 120 beat-per-minute theory. The feel, the enthusiasm, the snappy beat and crisp clean sound propelled ELIMINATOR into the ears and hearts of 5 million people who previously could have cared less about the boogie band of RIO GRANDE MUD."
+++
THE GREATEST ROCK REBRAND OF ALL TIME (by Jason Miller): "Sound engineer Linden Hudson researched the tempos at which the most popular rock tracks in the charts had been recorded. His data showed that there was something very special about 120 beats to a minute. Gibbons decided to record pretty much the whole of ZZ Top’s new album at that tempo. The result? 1983’s Eliminator. It was named after Gibbons’ Ford Coupé; it had been created through a unique combination of creative collaboration and data mining. And it was about to take the world by storm."
+++
ULTIMATECLASSICROCK DOT COM: "This new melding of styles was encouraged by Hudson, who served as a kind of pre-producer for ​EL LOCO … … Hudson helped construct ZZ Top drummer Frank Beard’s home studio, and had lived with him for a time. That led to these initial sessions, and then a closer collaboration on 1983’s ​ELIMINATOR.
+++
FIREDOGLAKE DOT COM: "I like Billy Gibbons’ guitar tone quite a lot, but I lost all respect for them after reading how badly they fucked over Linden Hudson (the guy who was the brains behind their move to include synthesizers and co-wrote most of their career-defining Eliminator record)."
+++
EMAIL FROM A ZZ TOP FAN TO LINDEN (One Of Many): "I write you today about broken hearts, one is mine and one is for you. I have been a ZZ Top fan since I was 6 years old. I purchased ELIMINATOR vinyl from Caldors in Connecticut with the $20 my grandma gave me for my birthday. I will spare the #1 fan epic saga of tee shirts, harassing Noreen at the fan club via phone weekly for years, over 40 shows attended. Posters, non stop conversation about the time I have spent idolizing this band, but more Billy G, as he has seemed to break free of the Lone Wolf shackles and it became more clear this was his baby. In baseball I was Don Mattingly’s #1 fan, Hershel Walker in football, Billy Gibbons in music. What do these individuals have in common? They were role models. Not a DUI, not a spousal abuse, not a drug overdose, not a cheater. Until I read your web page. I read Blayney’s book around 1992 or so, I was in middle school and I was familiar with your name for a long time. I didn’t realize you suffered so greatly or that your involvement was so significant. It pains me to learn my idol not only cheated but did something so wrong to another being. I now know this is where tall tales and fun loving bullshit and poor morals and ethics are distinguished and where I would no longer consider myself to look up to Billy. I love to joke and I love credit but I have always prided myself on ethics and principles… I hold them dear. I wanted to say, the snippet of UNDER PRESSURE you played sounded very new wave and I may like it more than the finished product. Well that’s all. You have reached ZZ Top’s biggest fan and I can let others know. Bummer. Cheers and good luck. James."​
+++
VINYLSTYLUS DOT COM: Much of Eliminator was recorded at 124bpm, the tempo that considered perfect for dance music by the band’s associate Linden Hudson. An aspiring songwriter, former DJ and – at the time – drummer Frank Beard’s house-sitter, Hudson’s involvement in the recording of the album would come back to haunt them. Despite assisting Gibbons with the pre-production and developing of the material that would end up on both El Loco and Eliminator, his contribution wasn’t credited when either record was released.
+++
INFOMORY DOT COM: ‘Eliminator’ is a studio album of the American rock band ZZ Top. It was released on March 23, 1983 and topped the charts worldwide. Its lyrics were co-written by the band’s sound engineer Linden Hudson while the band denied it.

Posted by lindenhud1 on 2017-10-01 14:59:45

Tagged: , horses , beautiful , field , spring , grass , sunrise , texas , elgin , elgin_texas , usa , america , gorgeous , horse , peaceful , country , countryside , rural , farmland , heavenly , scenic , heartland , god’s_country , pasture , american , beauty , serene , break_of_day , sun_up , nice , pleasant , perfect , beautiful_morning , morning , early , early_morning , crack_of_dawn , beautiful_day , farm , meadow , beautiful_texas_morning , nature , beauty_of_nature , planet_earth

Dusting 2

Dusting 2

From time to time a field needs to have lime applied to it to keep the soil fertile. This is the machine used to apply (dust) the field. The driver really only has to steer and reload since the application is computer controled and depends on the "speed over ground" to set the rate of application.

Posted by spincast1123 on 2008-12-11 16:32:46

Tagged: , Illinois , farm , rural , field , farming , Grundy county , land , onlythebestare , I love my pic , Quality pixels , topic , wowiekazowie , spreader , machine , dust , lime , truck , huge , dusting , fertilizer , yellow , white , black , soy beans , beans , interesting , photograph , flickr , copywrite , digital , digital photo , digital photography , Photo , photography , picture , image , electronic , electronic image , spincast1123 , copywrite protected

EIB Keen On Financing Solar Farm Project in India

EIB Keen On Financing Solar Farm Project in India

The European Investment Bank has expressed interest in funding solar park projects in India [Images], the Asian Development Bank [Get Quote], senior investment specialist exhaust Don said on Thursday.

“Our discussions with members of the donor’s investment banks and ADB, the Bank has expressed interest in financing the project of the Solar Park in India,” said sideline, and the Clean Energy Expo Asia conference in Singapore.

Financial support is also considered by the U.S. Export-Import Bank and the German KWF, he said, adding that financial support shows growing support for the mission of the National Solar India, which involves the installation of 20,000 MW by 2022.

This would be several billion dollars of investment, on the basis of $ 2,600,000 per MW for large investment projects and $ 3 million investment per MW for the small projects that Purkis said.Noting India has only 14 MW of solar energy in conjunction with the main network, it highlighted two solar park projects in Gujarat and Rajasthan [photos], which reflect the two state governments to support the development of clean energy in the country.

Gujarat has set aside a site of 2,500 acres for the projects of 1000 MW solar power, while Rajasthan has 8,000 hectares to 3,000 MWe-two parks will be part of the second phase of the national mission that requires solar 4000 MW solar installation 2015.The two countries will also be providing infrastructure leveled sites and transmission connectivity options and utilities such as water projects.

Manila-based ADB provides $ 3,000,000 technical assistance projects by organizing and monitoring the funding through its donor members and investment banks, “said Purkis who presented an industry report on” supporting ADB solar energy in India. “Meanwhile, the ADB also support installation missions for Phase I of 350 MW of solar panels, would be 150 MW 5 MW and 200 MW plant will 50 MW per plant.

“We saw a strong expression of the interests of smaller investment 5 MW solar power, about 300 investors, is valid, said the demolition, adding that the Indian government had been expected to make smaller projects first month.ADB also supported this project by providing credit guarantees for lending banks, to convince the 50 percent return on loans for projects of small size are unable to reach a business decision, he said.The banks agreed to support these projects small, where the duration of the loan for 15 years, he added.

E Free Press Release

More Radical Transparency Articles

Morning Drive To Work

Morning Drive To Work

I have a beautiful drive into work each monday morning. Unfortunately it is a four hour drive to work, and I don’t return until friday, but a beautiful one at that. I used to shoot a lot at sunset or shortly thereafter. I still do, but driving through the country at 5 in the morning has made me realize that sunrise is much more breathtaking. I often see things that I’m sure I never will see again; however I rarely ever pull over to take a picture since I am in a rush.

This was shat at beleve it or not, ISO 100, and was properly exposed. The raw processor I have when I am away from home is not very good; however lightroom would never run on this old laptop. So all my raw photos have crazy grain. Oh well, I’ll process this one again when I am home; however I almost spend no time at the computer when I am.

Sorry I have not had many posts lately. Life has taken me down a hecktic road. I am working 2 jobs at the moment and trying to manage a business. Each day I work from 7:00 am until 12:30 am. My camera collects dust and I long for a day when I can pick it up.

View On Black

Posted by recyclethis on 2007-08-17 01:03:24

Tagged: , northern , ontario , field , mist , fog , pink , blue , purple , yellow , golden , landscape , trees , farm , sunrise

The classic countryside

The classic countryside

After what seemed like years of 50 hour weeks without holidays, finally a long weekend had arrived, and it was time to visit the country.

Cruising along what seemed like an endless dirt track on a motorbike, I arrived at a field which I was able to tell straight away was worthy of a photo.

I immediately hit the kill switch to cut the engine, put the motorbike stand down, and stepped off, I was mesmerised by this vast countryside beauty.

I reached over my shoulder to remove my camera backpack to discover it was covered in a thick layer of red dust from the long ride. Luckily the contents were well protected, as this would have been one of the most regrettable moments in my life had I not have been able to take a photo here.

My intended long weekend escape from my mobile phone, television, and computer didn’t seem to be much of one when I reflected on this real-life image of a field of the greenest lucern and bluest sky that man had ever seen.

I no longer felt like I was in the remote country of Australia, in fact, I felt like I was sitting in front of my Windows Desktop on a Giant computer screen, anxiously looking for my start button.

Posted by markdanielowen on 2007-01-31 02:19:44

Tagged: , markdanielowen , australia , country , countryside , lucern , hay , grass , summer , windows desktop , screenshot , background , wallpaper , farm , nsw , new , south , wales , new south wales , clouds , tree , outback , goulburn , crookwell , canon 30d , canon eos 30d , canon , eos , 30d , dslr , digital , slr , digital slr , markowen , mark owen photography , mark , owen , photography

Dusting 1

Dusting 1

From time to time a field needs to have lime applied to it to keep the soil fertile. This is the machine used to apply (dust) the field. The driver really only has to steer and reload since the application is computer controled and depends on the "speed over ground" to set the rate of application. This was shot using the full Zoom of my camera.. 15x..

Posted by spincast1123 on 2008-12-11 16:32:48

Tagged: , Illinois , farm , rural , field , farming , Grundy county , land , onlythebestare , I love my pic , Quality pixels , topic , wowiekazowie , spreader , machine , dust , lime , truck , huge , dusting , fertilizer , yellow , white , black , soy beans , beans , interesting , photograph , flickr , copywrite , digital , digital photo , digital photography , Photo , photography , picture , image , electronic , electronic image , spincast1123 , copywrite protected

The Great Escape (the morning after)

The Great Escape (the morning after)

We left our guest’s four year old daughter and seven year old son to play while the adults ate and drank next door. Curious as to why things had gone so quiet it was discovered that they were totally absorbed creating their own fun. When asked where all the animals were going, the adults were informed it was The Great Escape!

I built this wooden farm for my own children, modelled on the Caithness farm which I grew up on and which held so many happy family memories. It was an idea developed from a small, very simple ‘farm’ play board my grandfather made for my mother when she was a child on the same farm, and which in time my brothers and I enjoyed playing with our Corgi Fordson and Massey Ferguson diecast tractors and trailers once we came along as the next generation. Unfortunately by the time I built a grander version, my own children had discovered computers and the finished toy farm has lain in a damp garage gathering dirt and dust for the last 15 years.

Having had a few beers, and ignoring my wife’s complaints, I insisted on going out to the garage to retrieve it, cobwebs and all. I’ve waited years to see kids play with it and they didn’t need any encouragement. They’ll never know what satisfaction it gave me to see them enjoy it so much. It’s just a few months before my own grand-children start appearing and I look forward to seeing the next generation enjoying North Calder Farm.

Posted by pentlandpirate on 2012-04-08 11:33:29

Tagged: , thegreatescape , northcalder , toy , farm , britains , siku , tractor , sheep , cows , animals , farmyard , caithness , model

Die Ernte / The Harvest

Die Ernte / The Harvest

Ein Mähdrescher ist eine landwirtschaftliche Erntemaschine zur Ernte von Körnerfrüchten wie insbesondere Getreide, aber auch Raps, Sonnenblumen, Ackerbohnen, Grassamen oder Ähnlichem. Wie die zusammengesetzte Bezeichnung (vgl. auch im Englischen: combine harvester) andeutet, kann der Mähdrescher mehrere Verfahrensschritte in einem Arbeitsgang erledigen, insbesondere die Mahd und den Drusch der Körnerfrüchte.

Vorne am Mähdrescher ist das Schneidwerk oder ein Erntevorsatz angebaut. Diese nehmen das Erntegut vom Feld auf, ein Schneidwerk übernimmt überdies die Aufgabe des Mähens. Je nach Art der Druschfrüchte kommen verschiedene Schneidwerke zum Einsatz.

Da heutige Arbeitsbreiten die auf öffentlichen Straßen maximal zulässige Breite von drei bis dreieinhalb Meter meist übersteigen (Arbeitsbreiten von fast 14 Meter für Getreide und 12 Meter für Mais sind möglich), kann das Schneidwerk für Straßenfahrt entweder abgebaut oder (hydraulisch) zusammengeklappt werden. Das abgebaute Schneidwerk wird mit einem Schneidwerkswagen transportiert, welcher entweder vom Mähdrescher selbst oder einem anderen Zugfahrzeug gezogen wird.

Ein Schneidwerk besteht aus dem Schneidtisch sowie Halmteilern, welche die Getreidehalme der zu mähenden Bahn von dem noch stehen bleibenden Getreide abteilen, ggfls. Ährenhebern, welche liegende Getreidehalme (Lagergetreide) unterfahren und aufrichten sollen, der der Zuführung der Getreidehalme zum Mähwerk dienenden Haspel[1], dem Fingermähwerk und der Einzugsschnecke bzw. dem Förderband, welche das Schnittgut dem Dreschwerk zuführen.
Bei der Ernte von Raps werden zur Trennung der Schnittbahnen an den Seiten des Schneidwerkes seitlich senkrecht stehende Scherenschnittmesser angebaut und der Schneidtisch wird verlängert. Raps fällt sehr leicht aus den Samenständen heraus, und die sich verzweigenden Einzelpflanzen verhaken sich miteinander. Durch ein Auseinanderreißen der untereinander verworrenen Rapspflanzen würde es zu erheblichen Kornverlusten kommen. Die Verlängerung fängt die Samen auf, die von der Haspel ausgeschlagen werden.

Maispflücker oder Maisgebisse sind so konzipiert, dass die Pflanzenstängel bei der Überfahrt durch einen schmal zulaufenden Spalt gezogen und nur die dabei abgepflückten Kolben dem Dreschwerk zugeführt werden, während ein unter dem Tisch angebrachtes Häckselwerk die Reste zerkleinert. Für Getreide gibt es außerdem Ährenstripper oder auch nur Stripper genannt. Diese arbeiten nach demselben Prinzip wie Maispflücker. Von Vorteil ist, dass das Stroh nicht durch die Maschine muss, und sich somit die Stundenleistung des Mähdreschers erhöht.

Beim Drusch von Sonnenblumen werden die Blütenstände vom Stängel getrennt. Vom Aufbau ähneln Sonnenblumenschneidwerke den Maisschneidwerken.

Bei ungleichmäßig abreifenden Beständen wird die Frucht zunächst mit einem Schwadmäher abgemäht und auf Schwad abgelegt. Nach weiterem Abreifen der Frucht im Schwad nimmt der Mähdrescher diese mit einer Pick-Up zum Drusch auf.

Der Schrägförderer trägt den Erntevorsatz. Innen läuft eine Einzugskette, die das Erntegut von der Einzugsschnecke übernimmt und es dem Dreschaggregat zuführt.

Unmittelbar am Ende des Schrägförderers befindet sich eine Steinfangmulde. Die Dreschtrommel soll die schwereren Steine dort hineindrücken. Da Rotormähdrescher besonders empfindlich auf eingezogene Steine reagieren, gibt es Systeme, bei dem die Steine durch Klopfsensoren erkannt werden und sich bei Steinerkennung der Boden des Schrägförderers öffnet, so dass der Stein wieder auf den Boden gelangen kann.
Das Dreschorgan besteht aus einem Dreschkorb, in dem sich entweder eine Dreschtrommel oder ein Rotor mit hoher Geschwindigkeit drehen. Der Spalt zwischen Trommel/Rotor und Korb ist sehr eng. So wird das Korn aus dem Stroh ausgerieben und fällt durch die Maschen des Korbes. Etwa 90 % der Körner werden durch das Dreschaggregat vom Stroh getrennt und gelangen direkt in die Reinigung, lediglich das Stroh und darin noch enthaltenes Restkorn gelangen zur Abscheidung. Je nach Art der zu dreschenden Frucht kann über die Variation der Trommeldrehzahl und eine Veränderung des Dreschspaltes zwischen Dreschtrommel und Dreschkorb die Intensität des Druschs variiert werden.

Noch intensiver dreschen kann man durch verschließen der ersten Korbreihen, oder durch den Einbau von Reibleisten. Das ist notwendig, wenn Grannen von Gerstenkörnern abgebrochen werden sollen oder wenn Früchte gedroschen werden, bei denen die Samen sehr fest in den Blütenständen sitzen. Die Abscheidefläche des Korbes verringert sich dabei.

Vom Dreschaggregat gelangt das Erntegut zur Abscheidung, wo die restlichen Körner und nicht vollständig ausgedroschene Ähren vom Stroh getrennt werden. Die Abscheidung erfolgt meist über einen sogenannten Hordenschüttler. Dieser besteht aus mehreren versetzt an einer Kurbelwelle befestigten ca. 20 cm breiten sägezahnförmigen Rinnen, über die das Gut aufgrund der Schüttelbewegung nach hinten wandert, wobei das leichtere und sehr viel größere Stroh den ansteigend verlaufenden Schüttlern folgt. Die Körner und nicht vollständig ausgedroschene Ähren werden vom Stroh getrennt und fallen durch kleine Löcher in den Horden auf das Reinigungssieb. Bei axialen Abscheideorganen erfolgt die Abscheidung an einem oder zwei Rotoren, deren Funktionsweise einem Separator ähnelt. Unterhalb der Rotoren ist ein Korb (ähnlich dem Dreschkorb) angebracht, der das Stroh führt, bis es vom Rotor nach hinten aus dem Mähdrescher oder auf den Häcksler gelangt.

Das Reinigungsgut, bestehend aus Körnern und NKB (Nicht-Korn-Bestandteile = Spreu und Strohteile), gelangt vom Dreschwerk und weiteren Abscheideorganen (Schüttler oder Abscheiderotoren) zur Reinigung. Die Reinigung dieses Gemisches erfolgt in der Regel über zwei übereinander angeordnete Siebe, das Ober- und das Untersieb. Die Zuführung des Reinigungsgutes zu den Sieben erfolgt je nach Hersteller unterschiedlich:
a) Über einen Stufenboden (treppenförmiges Profilblech), der sowohl für die Förderung, als auch für eine gleichmäßige Verteilung in Längs- und Querrichtung und eine gewisse Vorentmischung zuständig ist. b) Über eine aktive Förderung mittels mehreren nebeneinander liegenden Schnecken, deren Hauptaufgabe darin besteht, innerhalb der Reinigung an Höhe zu gewinnen und das Reinigungsgut gleichmäßig den Sieben zuzuführen. c) Eine oder mehrere, mit Hilfe eines Gebläses, belüftete Fallstufen, die bereits vor Erreichen der Siebe einen großen Anteil der leichten Spreuanteile aus dem Reinigungsgut ausblasen. Damit wird vor allem erreicht, dass die Körner unter den NKB auf die Siebfläche auftreffen und zügig abgeschieden werden.

Beide Siebe werden von unten durch einen Luftstrom (Wind) belüftet. Dies sorgt für eine Auflockerung des Reinigungsgutes, wobei im günstigsten Fall eine so genannte Wirbelschichtphase entsteht. Dabei "schwimmen" leichte Anteile wie die Spreu und Kurzstroh auf und ermöglichen den wesentlich schwereren Körnern das Erreichen der Siebfläche.

Das Reinigungsgut gelangt von der Zuführung aus zunächst auf das Obersieb. Dieses hat im Wesentlichen die Aufgabe, Körner und unausgedroschene Ährenteile (Überkehr) zum Untersieb abzuscheiden und die NKB über das Siebende aus dem Mähdrescher zu fördern. Das Untersieb stellt die letzte Reinigungsstufe dar, wobei im Idealfall eine Kornreinheit von über 99,6 % erreicht wird. Das Reinkorn wird über eine Schnecke zu einer Maschinenseite (in der Regel in Fahrtrichtung rechts) und von dort mittels eines Elevators in den Korntank gefördert. Der Siebübergang des Untersiebes (Überkehr) besteht aus unausgedroschenen Ährenteilen, Körnern und Spreu. Diese Überkehr wird mit einer Schnecke zu einer oder beiden Seiten des Mähdreschers gefördert und von dort mit Hilfe einer weiteren Schnecke oder eines Elevators zum Dreschwerk oder den Förderelementen der Reinigung zurückgefördert. Hersteller, die die Überkehr zur Reinigung zurückführen, bauen auf dem Weg dorthin ein zusätzliches kleines Dreschorgan ein.

Da mit den NKB auch große Mengen an Unkrautsamen aus dem Mähdrescher gelangen, wird die Spreu ebenso wie das Stroh (sofern gehäckselt) bei Schnittbreiten über 3 Meter möglichst über die gesamte Arbeitsbreite verteilt, beispielsweise mittels scheibenförmiger Spreuverteiler. Durch Wechsel von Ober- und Untersiebbauarten sowie durch Variation der Windgeschwindigkeiten kann die Reinigung auf die zu dreschende Getreideart eingestellt werden. Sowohl die Frequenz als auch die Amplitude der Siebschwingung werden meist vom Hersteller vorgegeben und können nur mit großem Umbauaufwand geändert werden.

Der Getreidetank dient als Vorratsbehälter für das Korn und wird, oftmals auch parallel zum Drusch, über das Abtankrohr auf einen Transportanhänger oder einen Überladewagen entladen. Das Fassungsvermögen des Korntankes beträgt je nach Größe des Mähdreschers zwischen 5 und 12 Kubikmetern. Er ist im Allgemeinen so bemessen, dass im Getreide 15-30 min lang ohne Entleerung des Tanks gedroschen werden kann.

Am hinteren Ende des Mähdreschers, hinter den Dresch- und Abscheideorganen, wird das gedroschene Stroh aus dem Mähdrescher ausgeworfen. Das Stroh kann entweder zur späteren Bergung mit einer Ballenpresse auf Schwad gelegt oder gehäckselt werden. Zur Schwadablage verfügen Mähdrescher vielfach über Leitbleche oder Zinken, mit denen sich die Schwadbreite verstellen lässt, um diese auf die Presse anzupassen. Häufig ist bei neueren Maschinen ein Strohhäcksler montiert, der das gedroschene Stroh klein häckselt und es über die gesamte Schnittbreite verteilt. Das gehäckselte Stroh kann später in den Boden eingearbeitet werden und trägt so zur Erhöhung des Humusanteils bei. Bei immer größeren Schnittbreiten stellt eine gleichmäßige Strohverteilung heute eine große Herausforderung für die Hersteller dar.

Mit einer Nennleistung von 435 Kilowatt (591 PS) gilt der New Holland CR 9090[3] derzeit als der Mähdrescher mit der höchsten Motorleistung. Moderne Mähdrescher benötigen die Leistung vor allem für das Dreschaggregat, die Abscheideorgane und den Strohhäcksler. Abhängig von den Erntebedingungen und der Arbeitsbreite verbraucht alleine der Häcksler bis zu 20 % der verfügbaren Leistung. Da während des Dreschens sehr viel Staub entsteht, ist die Zuführung der Verbrennungs- und Kühlluft des Motors problembehaftet. Luftfilter und Kühler müssen daher durch maschinelle Einrichtungen sauber gehalten werden, was entweder mittels einer Absaugung, rotierender Bürsten oder durch ein Lüfterwendegetriebe geschieht. Das Wendegetriebe verändert die Drehrichtung des Kühlerventilators ab einer bestimmten Temperatur, so dass dieser den Kühler frei bläst.

Die ganze Maschine sitzt auf einem Fahrwerk, das von zwei großen und breiten Rädern (oft mehr als 80 cm breit) direkt hinter dem Schneidwerk und unterhalb der Kabine dominiert wird. Gelenkt wird über die hinteren, kleineren Räder. Beim Einsatz in schwierigem Gelände kommen Allradantriebe und auch vermehrt Raupenlaufwerke zum Einsatz, deren Vorteile zum einen in einer geringeren Bodenverdichtung und zum anderen in einer höheren Laufruhe der Maschine liegen, die besonders bei sehr breiten Schneidwerken von Bedeutung ist. Durch die Auslegung eines Mähdreschers als Hecklenker kann mit dem unmittelbar vor der Vorderachse montierten Schneidwerk ein sehr enger Wendekreis erreicht werden.

Da die optimale Fahrgeschwindigkeit beim Dreschen von vielen Faktoren abhängt (Motorleistung, Dreschverluste, Bestandsdichte, Lagergetreide, Bodenunebenheiten, etc.), ist es wichtig, dass die Geschwindigkeit des Mähdreschers stufenlos verändert werden kann. Dazu dienen meist Variator- oder hydrostatische Getriebe.

Anstelle des bei frühen Mähdreschern gängigen offenen Fahrerplatzes direkt hinter dem Schneidwerk und über dem Schrägförderer mit erheblicher Staub-, Lärm- und bei entsprechender Witterung Hitzebelastung des Maschinenführers ist bei modernen Mähdreschern fast ausnahmslos an gleicher Stelle eine geschlossene Fahrerkabine aufgebaut. Diese erlaubt einen wirksamen Schutz des Fahrers vor Staub, Lärm und Hitze und ist daher in der Regel klimatisiert und komfortabel für einen langen Arbeitstag (meist zwischen 10 und 14 Stunden) ausgeführt. Sie enthält auch die elektronischen Steuerungen und Anzeigen zur Einstellung und Überwachung aller relevanten Parameter des Mähdreschers (Motoranzeigen, Steuerung des Schneidwerks und des Dreschwerks, immer öfter Instrumente zur Ertragsmessung, teilweise kombiniert mit GPS-Erfassungssystemen).

Die Steuerung des Schneidwerks, des Abtankrohrs und der Fahrgeschwindigkeit wird mit einem Hebel durchgeführt, welcher ständig in der rechten Hand des Fahrers geführt wird (die linke Hand liegt am Lenkradknauf). Bei modernen Mähdreschern ist dies ein Joystick, der die Elektronik ansteuert. In älteren Modellen ist ein Hebel mit den Hydrauliksteuergeräten mechanisch verbunden. Durch Wahl der Hebelgasse wird die Funktion des Steuergeräts (Schneidwerkshöhe, Abstand Haspel/Schneidwerkstisch, Fahrgeschwindigkeit) gewählt. Weitere Hebelgassen können beispielsweise für Haspelgeschwindigkeit oder Dreschtrommeldrehzahl vorhanden sein, sind meist aber erst nach Lösen einer Sicherung zugänglich, um versehentliches Verstellen zu verhindern.

In den letzten Jahren werden vermehrt Steuerungs- und Kontrollaufgaben, die früher durch den Fahrer ausgeführt wurden, von automatisierten Einrichtungen übernommen. So wird beispielsweise das Schneidwerk auf einer vom Fahrer vorgegebenen Schnitthöhe automatisch den Geländeunebenheiten nachgeführt. Sensoren erfassen die Bodenunebenheiten, entsprechend der Sensordaten verändert die automatisierte Steuerung sodann Arbeitshöhe sowie Neigung des Schneidwerks. Ein weiterer Automatisierungsschritt sind selbsttätige Lenksysteme. Durch DGPS kann die Position des Mähdreschers auf dem Feld mit einer Genauigkeit von ± 10 cm bestimmt werden. Mit diesen Informationen führt der Bordcomputer den Mähdrescher parallel entlang der vorherigen Fahrspur über das Feld. Der Fahrer braucht das Steuer nur noch am Ende des Feldes in die Hände zu nehmen, um die Maschine zu wenden. Des Weiteren gibt es Systeme, die mit Sensoren die Menge des Dreschgutes messen und die Geschwindigkeit des Mähdreschers so anpassen, dass dieser immer mit optimaler Auslastung fährt.

Bis zur Mechanisierung der Landwirtschaft wurde Getreide manuell in mehreren Arbeitsschritten geerntet. Zuerst mähte man das Getreide mit Sichel, Sichte oder Sense ab und band es in der Regel zu Garben die man dann zunächst auf dem Feld stehen ließ. Diese Mahd erfolgte bereits vor der beim Mähdrusch erforderlichen Totreife des Getreides, das auf dem Feld in Garben aufgestellte Erntegut konnte auf diesem noch nachreifen und trocknen, sodass bei der Mahd weder Korn noch Stroh die notwendige Trockenheit zur Endlagerung haben mussten. In der Regel transportierte man die Garben sodann zum Bauernhof, dort wurde das Getreide, oft nach weiterer Lagerung in der Scheune auf der Tenne mit Dreschflegeln ausgedroschen. Anschließend reinigte man es durch sieben oder worfeln von der Spreu und Verunreinigungen wie Erde oder Unkrautsamen. Beim Worfeln wurden leichte Bestandteile des hochgeworfenen Druschguts wie die Spreu vom Wind weggeweht. Später wurden hierzu einfache handbetriebene Windfegen verwendet, bei denen ein Siebkasten das Getreide in einen darunter angebrachten Windkasten rieseln ließ; diese Windsichtung ist bis heute Bestandteil der Reinigungsstufe von Mähdreschern.

Mit der einsetzenden Mechanisierung wurden etwa ab 1786 zunächst stationäre Dreschmaschinen entwickelt, die Anfangs nur per Hand oder über Göpel durch Tiere angetrieben wurden. Später wurden Dampfmaschinen, Verbrennungsmotoren, Elektromotoren und andere Antriebe eingesetzt. Die erste Mähmaschine für Getreide wurde 1826 von dem schottischen Geistlichen Reverend Patrick Bell entwickelt. Mit der Erfindung des mechanischen Knoters 1857 wurde es möglich, Mähbinder zu bauen, die das Getreide vollmechanisiert zu Garben banden. Zunächst wurden diese Maschinen von Pferden gezogen und dabei über die Maschinenräder angetrieben. Mit Erscheinen brauchbarer Traktoren nutze man zunächst auch diese anstelle von Pferden zum Zug. Erst 1927 produzierte Krupp einen ersten Mähbinder, der unmittelbar über eine Zapfwelle vom Motor des Traktors angetrieben wurde.[4]

Aus der Kombination von Mähmaschine und fahrbarer Dreschmaschine entstanden die ebenfalls mobilen Mähdrescher. Bereits 1834 demonstrierten Hiram Moore und James Hascall in Michigan eine Maschine, die sowohl mähen und dreschen als auch reinigen konnte, die Arbeitsbreite betrug 4,60 Meter.[5] 1836 wurde ihre Maschine patentiert. Bis zu 40 Maultiere oder Pferde waren erforderlich, um diese Maschinen zu ziehen. Der Antrieb der Dresch- und Reinigungsorgane fand über eines der Räder statt. George Stockton Berry baute 1886 den ersten selbstfahrenden Mähdrescher, der von einer Dampfmaschine angetrieben wurde. Der Kessel wurde mit dem ausgedroschenen Stroh befeuert und versorgte auch den separaten Antrieb der Dreschorgane mit Dampf.[6] 1911 verwendete die Holt Manufacturing Company in Stockton, Kalifornien erstmal Verbrennungsmotoren auf Mähdreschern, diese trieben jedoch nur Dresch-, Abscheide- und Reinigungssystem an, und dienten noch nicht als Fahrantrieb.

Der erste selbstfahrende Mähdrescher eines deutschen Herstellers war der MD 1 der Maschinenfabrik Fahr, er wurde auf der DLG-Ausstellung in Hamburg im Jahr 1951 erstmals der Landwirtschaft präsentiert. Ein erster Rotormähdrescher wurde von New Holland im Jahr 1975 auf den Markt gebracht.
Bei der Abscheidung unterscheidet man zwischen zwei grundsätzlich verschiedenen Arten von Abscheideorganen.

Hordenschüttler: Bei herkömmlichen Mähdreschern erfolgt die Abscheidung über einen Hordenschüttler. Der Schüttler besteht aus vier bis sechs Horden, auf deren Oberseite widerhakenförmige Zacken angebracht sind. Alle Horden sind an zwei Kurbelwellen befestigt, die sich drehen. Es ergibt sich eine kreisförmige Exzenterbewegung der Horde: zuerst nach oben, dann nach hinten, dann nach unten, dann nach vorne. Wenn eine Horde am obersten Punkt ist, sind die daneben liegenden Horden am tiefsten. Auf dem Weg nach oben übernehmen die Horden so die Strohmatte von den daneben liegenden und führen sie mit den Widerhaken nach hinten. Bei der Abwärtsbewegung geben sie die Matte wieder an die daneben liegenden Horden ab. Leer laufen sie wieder in Fahrtrichtung nach vorne.
Dadurch wird das Stroh so aufgeworfen, dass die noch mitgeführten Körner durch die Strohmatte hindurchfallen. Unter jeder Horde ist eine Wanne auf der die Körner schräg nach vorne auf den Vorbereitungsboden laufen.
Der Schüttler ist jenes Abscheidesystem, welches das Stroh am wenigsten beansprucht und zerstört. Bei feuchtem oder unreifem Stroh sinkt die Abscheideleistung schnell. Bei der Fahrt bergauf steigen die Verluste ebenfalls, weil die Hangneigung der Schüttlerneigung entgegensteht. Am Seitenhang ist begrenzt die Horde an der Hangunterseite die Abscheideleistung. Unter diesen Bedingungen muss die Fahrgeschwindigkeit reduziert werden.
Axiale Abscheideelemente: Mähdrescher mit sehr breiten Schneidwerken werden darum mit axialen Abscheideelementen gebaut. Ein oder zwei (dann nebeneinander angeordnete) axiale Rotoren übernehmen die Aufgabe der Abscheidung. Durch die Fliehkräfte werden Korn und Stroh voneinander getrennt. Elemente aus einer Korbstruktur, die den Rotor mindestens unterhalb umschließen, verhindern, dass zu viele Nichtkornbestandteile auf die Reinigung gelangen und somit deren Funktionsfähigkeit einschränken. Bei axialen Systemen passiert das Stroh die Abscheidung rund zehnmal schneller als bei Schüttlersystemen. Daher sind größere Durchsätze möglich und vor allem bei feuchten Erntebedingungen ist der Kornverlust erheblich geringer. Axialmähdrescher sind zudem weniger anfällig gegen starke Hangneigungen, da hier die Schwerkraft weniger Bedeutung für die Abscheidung hat.

Getreide wird in aller Regel auf ebenen Flächen angebaut. Es gibt jedoch Regionen, wo auch in sanft hügeligen bis zum Teil recht steilen Topografien Druschfrüchte angebaut werden. Wie oben beschrieben, wird der Drusch- und Trennprozess in Mähdreschern sehr stark von der Topografie oder eben der Schwerkraft beeinflusst. Bereits die durch die Hangneigung einseitige Beschickung des Dreschwerkes reduziert die Leistungsfähigkeit der Maschine enorm, da nicht die ganze Dreschwerksbreite genutzt wird. Schlimmer jedoch ist die einseitige Beschickung der Reinigungsanlage (Vorbereitungsboden, Siebe) mit dem ausgedroschenen Gut. Spreu und Korn erreichen die Reinigungsanlage auf der hangabwärts liegenden Seite, darüber hinaus wird durch die Siebbewegung das Material weiter einseitig konzentriert.

Die Leistungseinbuße steigt exponentiell mit der Hangneigung. Es ist also von großem Interesse, die Hangneigung resp. diese Leistungseinbuße zu kompensieren. Dazu existieren verschiedene Systeme.
Ältestes Verfahren, das heute vor allem bei extremen Hanglagen noch immer angewandt wird, ist, dass das Fahrwerk so angehoben oder abgesenkt wird, dass die Dreschorgange waagerecht liegen. Der erste Mähdrescher mit einem Hangausgleich nach diesem Prinzip wurde 1891 von den Gebrüdern Holt in Kalifornien gebaut.[8] Der Hangausgleich musste bei früheren Maschinen mechanisch eingestellt werden, wofür eine zweite Person auf dem Mähdrescher notwendig war. Der erste automatische Hangausgleich wurde 1941 von Raymond A. Hanson entwickelt. 1945 stattete er die ersten Maschinen mit diesem System aus, bei dem der Grad der Neigung über Quecksilberschalter ermittelt wurde, und die Abscheideorgane über pneumatische Zylinder entsprechend ausgerichtet wurden.[9]

Heute geschieht der Ausgleich in der Regel mittels zweier Hydraulikzylinder, die den Mähdrescher einseitig von der Vorderachse abheben und somit waagerecht halten. Da die Hinterachse pendelnd gelagert ist, ist hier kein Neigungsausgleich erforderlich. Seltener ermöglicht eine Hubhydraulik an der Hinterachse auch einen Neigungsausgleich in Längsrichtung.

Problematisch ist hier der technische Aufwand und die damit verbundenen Kosten. Auch die Gutübergabe vom schrägen Schneidwerk auf den geraden Mähdrescher ist problematisch. Dieses System bietet jedoch den Vorteil, dass das komplette Fahrzeug mit Ausnahme des Schneidwerks in der Waagerechten gehalten wird. Somit wird die Leistung der Reinigungsorgane nicht durch die Seitenlage beeinträchtigt. Auch kann so das Volumen des Korntanks voll ausgenutzt werden, was nicht möglich ist, wenn das Fahrzeug zur Seite geneigt ist, da das Erntegut zu dieser Seite verrutschen würde, was in extremen Fällen sogar ein Umkippen des Fahrzeugs zur Folge haben kann. Darüber hinaus erhöht sich der Fahrkomfort, da auch der Fahrer in einer geraden Sitzposition verbleibt, und nicht aus dem Sitz zu rutschen droht.

Die in den letzten Jahren in vielen Bereichen stattfindende Unternehmenskonzentration ist auch auf dem Agrar-Sektor zu beobachten. Bei Mähdreschern tragen zusätzlich die hohen technologischen Anforderungen sowie die kapitalintensive Produktion dazu bei, dass viele früher eigenständige Unternehmen heute in einem Dachkonzern vereinigt sind. Dabei werden etablierte Markennamen teilweise nebeneinander beibehalten oder – etwa regional oder im Produktspektrum – differenziert. Während weniger bekannte oder angesehene Marken aufgegeben werden, können Unternehmen mit hochwertigem Image bisher nicht vorhandene Produktlinien unter eigenem Namen von Konzernschwestern übernehmen.

John Deere ist Weltmarktführer bei Landmaschinen.
Claas ist europäischer Marktführer für Mähdrescher.
Im CNH Global-Konzern, weltweit an zweiter Stelle der Landmaschinenproduzenten, ging unter anderem die DDR-Marke Fortschritt auf, heutige Marken sind
Case IH und
New Holland.
Die 1990 entstandene AGCO (Allis-Gleaner Corporation) vereinigte einige bekannte Marken:
Gleaner war von Beginn an der Markenname für Erntemaschinen.
Massey Ferguson wurde 1994 übernommen.
Fendt kam 1997 zum Konzern und bietet seit 1999 Mähdrescher unter eigenem Namen an.
Laverda ist seit 2010 im hundertprozentigen Konzernbesitz.
Deutz-Fahr ist das Nachfolgeunternehmen des ersten deutschen Produzenten.
Rostselmasch ist ein russischer Hersteller von u.a. Mähdreschern.
Sampo Rosenlew ist ein finnischer Hersteller von u.a. Mähdreschern.
Parzellendrescher für das Versuchswesen stellen die Firmen Zürn Harvesting [10] und Wintersteiger her.

The combine harvester, or simply combine, is a machine that harvests grain crops. The name derives from its combining three separate operations comprising harvesting—reaping, threshing, and winnowing—into a single process. Among the crops harvested with a combine are wheat, oats, rye, barley, corn (maize), soybeans and flax (linseed). The waste straw left behind on the field is the remaining dried stems and leaves of the crop with limited nutrients which is either chopped and spread on the field or baled for feed and bedding for livestock.

Combine harvesters are one of the most economically important labor saving inventions, enabling a small fraction of the population to be engaged in agriculture.

Scottish inventor Patrick Bell invented the reaper in 1826. The combine was invented in the United States by Hiram Moore in 1834, and early versions were pulled by horse or mule teams.[2] In 1835, Moore built a full-scale version and by 1839, over 50 acres of crops were harvested.[3] By 1860, combine harvesters with a cutting width of several metres were used on American farms.[4] In 1882, the Australian Hugh Victor McKay had a similar idea and developed the first commercial combine harvester in 1885, the Sunshine Harvester.[5]

Combines, some of them quite large, were drawn by mule or horse teams and used a bullwheel to provide power. Later, steam power was used, and George Stockton Berry integrated the combine with a steam engine using straw to heat the boiler.[6]Tractor-drawn, combines became common after World War II as many farms began to use tractors. These combines used a shaker to separate the grain from the chaff and straw-walkers (grates with small teeth on an eccentric shaft) to eject the straw while retaining the grain. Early tractor-drawn combines were usually powered by a separate gasoline engine, while later models were PTO-powered. These machines either put the harvested crop into bags that were then loaded onto a wagon or truck, or had a small bin that stored the grain until it was transferred to a truck or wagon with an auger.

In the U.S., Allis-Chalmers, Massey-Harris, International Harvester, Gleaner Manufacturing Company, John Deere, and Minneapolis Moline are past or present major combine producers.

In 1911, the Holt Manufacturing Company of California produced a self-propelled harvester.[7] In Australia in 1923, the patented Sunshine Auto Header was one of the first center-feeding self-propelled harvesters.[8] In 1923 in Kansas, the Curtis brothers and their Gleaner Manufacturing Company patented a self-propelled harvester which included several other modern improvements in grain handling.[9] Both the Gleaner and the Sunshine used Fordson engines. In 1929 Alfredo Rotania of Argentina patented a self-propelled harvester.[10] In 1937, the Australian-born Thomas Carroll, working for Massey-Harris in Canada, perfected a self-propelled model and in 1940 a lighter-weight model began to be marketed widely by the company.[11] Lyle Yost invented an auger that would lift grain out of a combine in 1947, making unloading grain much easier.[12]

In 1952 Claeys launched the first self- propelled combine harvester in Europe;[13] in 1953, the European manufacturer CLAAS developed a self-propelled combine harvester named ‘Herkules’, it could harvest up to 5 tons of wheat a day.[14] This newer kind of combine is still in use and is powered by diesel or gasoline engines. Until the self-cleaning rotary screen was invented in the mid-1960s combine engines suffered from overheating as the chaff spewed out when harvesting small grains would clog radiators, blocking the airflow needed for cooling.

A significant advance in the design of combines was the rotary design. The grain is initially stripped from the stalk by passing along a helical rotor instead of passing between rasp bars on the outside of a cylinder and a concave. Rotary combines were first introduced by Sperry-New Holland in 1975.[15]

In about the 1980s on-board electronics were introduced to measure threshing efficiency. This new instrumentation allowed operators to get better grain yields by optimizing ground speed and other operating parameters.

Combines are equipped with removable heads that are designed for particular crops. The standard header, sometimes called a grain platform, is equipped with a reciprocating knife cutter bar, and features a revolving reel with metal or plastic teeth to cause the cut crop to fall into the auger once it is cut. A variation of the platform, a "flex" platform, is similar but has a cutter bar that can flex over contours and ridges to cut soybeans that have pods close to the ground. A flex head can cut soybeans as well as cereal crops, while a rigid platform is generally used only in cereal grains.

Some wheat headers, called "draper" headers, use a fabric or rubber apron instead of a cross auger. Draper headers allow faster feeding than cross augers, leading to higher throughputs due to lower power requirements. On many farms, platform headers are used to cut wheat, instead of separate wheat headers, so as to reduce overall costs.

Dummy heads or pick-up headers feature spring-tined pickups, usually attached to a heavy rubber belt. They are used for crops that have already been cut and placed in windrows or swaths. This is particularly useful in northern climates such as western Canada where swathing kills weeds resulting in a faster dry down.

While a grain platform can be used for corn, a specialized corn head is ordinarily used instead. The corn head is equipped with snap rolls that strip the stalk and leaf away from the ear, so that only the ear (and husk) enter the throat. This improves efficiency dramatically since so much less material must go through the cylinder. The corn head can be recognized by the presence of points between each row.

Occasionally rowcrop heads are seen that function like a grain platform, but have points between rows like a corn head. These are used to reduce the amount of weed seed picked up when harvesting small grains.

Self-propelled Gleaner combines could be fitted with special tracks instead of tires or tires with tread measuring almost 10in deep to assist in harvesting rice. Some combines, particularly pull type, have tires with a diamond tread which prevents sinking in mud. These tracks can fit other combines by having adapter plates made.

The cut crop is carried up the feeder throat (commonly called the "feederhouse") by a chain and flight elevator, then fed into the threshing mechanism of the combine, consisting of a rotating threshing drum (commonly called the "cylinder"), to which grooved steel bars (rasp bars) are bolted. The rasp bars thresh or separate the grains and chaff from the straw through the action of the cylinder against the concave, a shaped "half drum", also fitted with steel bars and a meshed grill, through which grain, chaff and smaller debris may fall, whereas the straw, being too long, is carried through onto the straw walkers. This action is also allowed due to the fact that the grain is heavier than the straw, which causes it to fall rather than "float" across from the cylinder/concave to the walkers. The drum speed is variably adjustable on most machines, whilst the distance between the drum and concave is finely adjustable fore, aft and together, to achieve optimum separation and output. Manually engaged disawning plates are usually fitted to the concave. These provide extra friction to remove the awns from barley crops. After the primary separation at the cylinder, the clean grain falls through the concave and to the shoe, which contains the chaffer and sieves. The shoe is common to both conventional combines and rotary combines.

In the Palouse region of the Pacific Northwest of the United States the combine is retrofitted with a hydraulic hillside leveling system. This allows the combine to harvest the steep but fertile soil in the region. Hillsides can be as steep as a 50% slope. Gleaner, IH and Case IH, John Deere, and others all have made combines with this hillside leveling system, and local machine shops have fabricated them as an aftermarket add-on.

The first leveling technology was developed by Holt Co., a California firm, in 1891.[16] Modern leveling came into being with the invention and patent of a level sensitive mercury switch system invented by Raymond Alvah Hanson in 1946.[17] Raymond’s son, Raymond, Jr., produced leveling systems exclusively for John Deere combines until 1995 as R. A. Hanson Company, Inc. In 1995, his son, Richard, purchased the company from his father and renamed it RAHCO International, Inc. In March 2011, the company was renamed Hanson Worldwide, LLC.[18] Production continues to this day.

Hillside leveling has several advantages. Primary among them is an increased threshing efficiency on hillsides. Without leveling, grain and chaff slide to one side of separator and come through the machine in a large ball rather than being separated, dumping large amounts of grain on the ground. By keeping the machinery level, the straw-walker is able to operate more efficiently, making for more efficient threshing. IH produced the 453 combine which leveled both side-to-side and front-to-back, enabling efficient threshing whether on a hillside or climbing a hill head on.

Secondarily, leveling changes a combine’s center of gravity relative to the hill and allows the combine to harvest along the contour of a hill without tipping, a very real danger on the steeper slopes of the region; it is not uncommon for combines to roll on extremely steep hills.

Newer leveling systems do not have as much tilt as the older ones. A John Deere 9600 combine equipped with a Rahco hillside conversion kit will level over to 44%, while the newer STS combines will only go to 35%. These modern combines use the rotary grain separator which makes leveling less critical. Most combines on the Palouse have dual drive wheels on each side to stabilize them.

A leveling system was developed in Europe by the Italian combine manufacturer Laverda which still produces it today.

Sidehill combines are very similar to hillside combines in that they level the combine to the ground so that the threshing can be efficiently conducted; however, they have some very distinct differences. Modern hillside combines level around 35% on average, older machines were closer to 50%. Sidehill combines only level to 18%. They are sparsely used in the Palouse region. Rather, they are used on the gentle rolling slopes of the mid-west. Sidehill combines are much more mass-produced than their hillside counterparts. The height of a sidehill machine is the same height as a level-land combine. Hillside combines have added steel that sets them up approximately 2–5 feet higher than a level-land combine and provide a smooth ride.
Another technology that is sometimes used on combines is a continuously variable transmission. This allows the ground speed of the machine to be varied while maintaining a constant engine and threshing speed. It is desirable to keep the threshing speed constant since the machine will typically have been adjusted to operate best at a certain speed.

Self-propelled combines started with standard manual transmissions that provided one speed based on input rpm. Deficiencies were noted and in the early 1950s combines were equipped with what John Deere called the "Variable Speed Drive". This was simply a variable width sheave controlled by spring and hydraulic pressures. This sheave was attached to the input shaft of the transmission. A standard 4 speed manual transmission was still used in this drive system. The operator would select a gear, typically 3rd. An extra control was provided to the operator to allow him to speed up and slow down the machine within the limits provided by the variable speed drive system. By decreasing the width of the sheave on the input shaft of the transmission, the belt would ride higher in the groove. This slowed the rotating speed on the input shaft of the transmission, thus slowing the ground speed for that gear. A clutch was still provided to allow the operator to stop the machine and change transmission gears.

Later, as hydraulic technology improved, hydrostatic transmissions were introduced by Versatile Mfg for use on swathers but later this technology was applied to combines as well. This drive retained the 4 speed manual transmission as before, but this time used a system of hydraulic pumps and motors to drive the input shaft of the transmission. This system is called a Hydrostatic drive system. The engine turns the hydraulic pump capable of pressures up to 4,000 psi (30 MPa). This pressure is then directed to the hydraulic motor that is connected to the input shaft of the transmission. The operator is provided with a lever in the cab that allows for the control of the hydraulic motor’s ability to use the energy provided by the pump. By adjusting the swash plate in the motor, the stroke of its pistons are changed. If the swash plate is set to neutral, the pistons do not move in their bores and no rotation is allowed, thus the machine does not move. By moving the lever, the swash plate moves its attached pistons forward, thus allowing them to move within the bore and causing the motor to turn. This provides an infinitely variable speed control from 0 ground speed to what ever the maximum speed is allowed by the gear selection of the transmission. The standard clutch was removed from this drive system as it was no longer needed.

Most if not all modern combines are equipped with hydrostatic drives. These are larger versions of the same system used in consumer and commercial lawn mowers that most are familiar with today. In fact, it was the downsizing of the combine drive system that placed these drive systems into mowers and other machines.

Despite great advances mechanically and in computer control, the basic operation of the combine harvester has remained unchanged almost since it was invented.

First, the header, described above, cuts the crop and feeds it into the threshing cylinder. This consists of a series of horizontal rasp bars fixed across the path of the crop and in the shape of a quarter cylinder. Moving rasp bars or rub bars pull the crop through concaved grates that separate the grain and chaff from the straw. The grain heads fall through the fixed concaves. What happens next is dependent on the type of combine in question. In most modern combines, the grain is transported to the shoe by a set of 2, 3, or 4 (possibly more on the largest machines) augers, set parallel or semi-parallel to the rotor on axial mounted rotors and perpendicular Flow" combines.) In older Gleaner machines, these augers were not present. These combines are unique in that the cylinder and concave is set inside feederhouse instead of in the machine directly behind the feederhouse. Consequently, the material was moved by a "raddle chain" from underneath the concave to the walkers. The clean grain fell between the raddle and the walkers onto the shoe, while the straw, being longer and lighter, floated across onto the walkers to be expelled. On most other older machines, the cylinder was placed higher and farther back in the machine, and the grain moved to the shoe by falling down a "clean grain pan", and the straw "floated" across the concaves to the back of the walkers.

Since the Sperry-New Holland TR70 Twin-Rotor Combine came out in 1975, most manufacturers have combines with rotors in place of conventional cylinders. However, makers have now returned to the market with conventional models alongside their rotary line-up. A rotor is a long, longitudinally mounted rotating cylinder with plates similar to rub bars (except for in the above mentioned Gleaner rotaries).

There are usually two sieves, one above the other. The sieves and basically a metal frame, that has many rows of "fingers" set reasonably close together. The angle of the fingers is adjustable as to change the clearance and control the size of material passing through. The top is set with more clearance than the bottom as to allow a gradual cleaning action. Setting the concave clearance, fan speed, and sieve size is critical to ensure that the crop is threshed properly, the grain is clean of debris, and that all of the grain entering the machine reaches the grain tank or ‘hopper’. ( Observe, for example, that when travelling uphill the fan speed must be reduced to account for the shallower gradient of the sieves.)

Heavy material, e.g., unthreshed heads, fall off the front of the sieves and are returned to the concave for re-threshing.

The straw walkers are located above the sieves, and also have holes in them. Any grain remaining attached to the straw is shaken off and falls onto the top sieve.

When the straw reaches the end of the walkers it falls out the rear of the combine. It can then be baled for cattle bedding or spread by two rotating straw spreaders with rubber arms. Most modern combines are equipped with a straw spreader.

For some time, combine harvesters used the conventional design, which used a rotating cylinder at the front-end which knocked the seeds out of the heads, and then used the rest of the machine to separate the straw from the chaff, and the chaff from the grain. The TR70 from Sperry-New Holland was brought out in 1975 as the first rotary combine. Other manufacturers soon followed, IH with their ‘Axial Flow’ in 1977 and Gleaner with their N6 in 1979.

In the decades before the widespread adoption of the rotary combine in the late seventies, several inventors had pioneered designs which relied more on centrifugal force for grain separation and less on gravity alone. By the early eighties, most major manufacturers had settled on a "walkerless" design with much larger threshing cylinders to do most of the work. Advantages were faster grain harvesting and gentler treatment of fragile seeds, which were often cracked by the faster rotational speeds of conventional combine threshing cylinders.

It was the disadvantages of the rotary combine (increased power requirements and over-pulverization of the straw by-product) which prompted a resurgence of conventional combines in the late nineties. Perhaps overlooked but nonetheless true, when the large engines that powered the rotary machines were employed in conventional machines, the two types of machines delivered similar production capacities. Also, research was beginning to show that incorporating above-ground crop residue (straw) into the soil is less useful for rebuilding soil fertility than previously believed. This meant that working pulverized straw into the soil became more of a hindrance than a benefit. An increase in feedlot beef production also created a higher demand for straw as fodder. Conventional combines, which use straw walkers, preserve the quality of straw and allow it to be baled and removed from the field.

Grain combine fires are responsible for millions of dollars of loss each year. Fires usually start near the engine where dust and dry crop debris accumulate.[19] From 1984 to 2000, 695 major grain combine fires were reported to local fire departments.[20] Dragging chains to reduce static electricity was one method employed for preventing harvester fires, but the role of static electricity linked to causing harvester fires is yet to be established.
Quelle:
en.wikipedia.org/wiki/Combine_harvester
de.wikipedia.org/wiki/M%C3%A4hdrescher

Posted by !!! Painting with Light !!! #schauer on 2014-08-07 06:49:19

Tagged: , Schauer , Christian , Oberdiendorf , Thyrnau , Passau , Hauzenberg , Bayern , Bavaria , Deutschland , Germany , Ernte , Harvest , Harvester , Bauer , Farmer , Landwirt , Natur , Nature , Old , Alt , Nostalgie , Denim , Retro , Vintage , Farm , Bauernhof , Strom , Reifen , Wheel , Stahl , Steel , Outdoor , München , Munich , Deutz , Fahr , John , Deere , Landwirtschaft , Öko , Ökologie , Messer , Knife , Stroh , agricultor , agriculteur , Fahrzeug , Vehicle , Vehículo , véhicule , Mähdrescher , Traktor , Bulldog , tracteur , Tractor , agriculture , agricultura , récolte , cosecha , Kuh , Cow , Landschaft , Landscape , Feld , Field , Korn , Corn , Mais , driver , fahrer , Pussy , Paining , with , Light , Gras