IMG_5445

IMG_5445

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:33:14

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5417

IMG_5417

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:32:59

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5428

IMG_5428

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:33:04

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5413

IMG_5413

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:32:57

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5426

IMG_5426

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:33:03

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5414

IMG_5414

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:32:57

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5412

IMG_5412

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:32:57

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

IMG_5416

IMG_5416

Elements

Everything around us contains material that was once part of a star. The cells in our bodies, the air we breathe, and materials that make up the planets in our solar system are all linked to the stars through chemical elements.

Hydrogen and helium are the two most abundant elements. They were made in the Big Bang more than 13 billion years ago. Others, like oxygen and iron, are created deep inside stars. Supernova explosions blast them into space and form even heavier elements, such as gold and uranium.

Everyday Elements

Chemical elements are the building blocks of everything. The Sun and stars, the silicon chips in our computers, and all the cells in our bodies are collections of elements.

Hydrogen is the lightest and most plentiful element. It has one proton, one electron, and an atomic number of 1. It was created in the Big Bang, along with helium. The other elements up to uranium (number 92) are made in stars.

Elements Made by People

When physicists smash smaller atoms together during experiments in nuclear accelerators and reactors, they create elements that have atomic numbers higher than 92. Neptunium, californium, and plutonium (which is used in spacecraft power supplies) are good examples of these elements. Scientists also study the tracks atomic particles make in bubble chambers during high-speed experiments (right).

Formation and Distribution

Big Bang

The nuclei of the three most basic and plentiful elements in the universe began forming during the first 100 seconds after the Big Bang.

Stars

Atomic reactions deep inside stars combine atoms to form many of the familiar elements that make up planets, stars, galaxies, and us.

Supernovae

The extremely high temperatures and pressures inside exploding stars help create the heaviest elements. Supernova explosions scatter them throughout space.

Humans

Our bodies contain more than two dozen elements. We are made of material that was created in stars.

Gases

Most elements are solids and liquids at room temperature. Eleven are gases.

Stars, People, and Atoms

Elements in Us

The human body is mostly hydrogen and oxygen, with traces of other elements (color coded to the elements table).

How Elements Reach Our Bodies

If you want to know where most elements originate, look at the night sky. Most of the stars and all the planets you see came from materials cooked up deep inside other stars. When those stars died, their elements were scattered into space in gas and dust clouds.

•A nebula is the graveyard of a star that exploded as a supernova. Material in the cloud may become new stars.

We, too, are part of the cosmic recycling process. It began billions of years ago inside an ancient star. The calcium in our bones, iron in our blood, and oxygen in our lungs were all created inside that long-dead star.

•Look at your hand. It is a piece of the universe. Its millions of skin cells are each made of elements from stars.

Elements are the building blocks of the universe. Atoms are the basic units of elements. Most atoms are made up of three types of particles: protons, neutrons, and electrons. Every structure in the cosmos is made of atoms from many different elements.

•Each droplet of carbon is a tenth of the width of a human hair and contains thousands of atoms.

Creation of Elements in Supernova Explosions

Thanks to stars and the elements they create, the universe renews itself. When stars die, their material gets scattered through space as the seeds for new generations of stars. The heaviest elements are created in huge stellar explosions like Supernova 1987a (left). Temperatures and pressures in these outbursts are so high that atoms fuse to make more complex elements, such as lead, gold, and uranium.

The Fingerprints of Elements

Light from celestial objects identifies the chemical elements they contain. Each element has a specific fingerprint, which we can see with a spectroscope. Helium and neon are made inside stars. Helium’s spectral fingerprint is simple, while neon has many more lines. Elements like krypton and mercury are created in supernova explosions.

Posted by Autistic Reality on 2016-05-17 19:32:58

Tagged: , Ahmanson Hall of the Sky , Sky , Skies , Hall , Halls , Hall of the Sky , SoCal , California , CA , USA , US , America , Observatory , Observatories , State of California , Los Angeles , Los Angeles County , Los Feliz , Art Deco , Griffith Observatory , United States of America , United States , Landmarks , Landmark , LA , City of Los Angeles , Astronomy , Observation , Observing , Stargazing , Griffith J. Griffith , Science , Sciences , Building , Buildings , Structure , Structures , Architecture , Griffith Trust , John C. Austin , Frederick M. Ashley , Griffith Park , Park , Parks , Monument , Monuments , Russell W. Porter , Santa Monica Mountains , Mountain , Mountains , Interior , Interiors , Inside , Insides , Indoor , Indoors

20150317 – Thailog – z – case – inside looking out – IMG_0220

20150317 - Thailog - z - case - inside looking out - IMG_0220

I wondered what things looked like from the power supply’s point of view, so I placed the camera there, taking a picture from the INSIDE of the computer.

My case: By far the best I’ve ever owned, though it has a fatal flaw with harddrive noise in certain harddrive cages, and I wish the windows were bigger, and I wish the color-cycling could be automated. But still: This NZXT Phantom 820 Series case was $199.99 from NewEgg. "CA-PH820-M1 Matte Black St" / 2 yr warranty / Steel & Plastic / Power Supply Mounted: Bottom / Motherboard Compatibility: Micro ATX / ATX / Mini ITX / E-ATX / XL-ATX / Side Panel Window / Expansion: External 5.25" Drive Bays:4 / External 3.5" Drive Bays:No / Internal 3.5" Drive Bays:6 / Expansion Slots:9 / Removable Filter / Front Ports: 2xUSB3.0 + 4xUSB2.0 + Audio + SD Card Reader / Fans: 1x140mm Rear + 1x200mm Front + 1x200mm Top + 1x200mm Side Fan / Side Air duct: No / Dimensions:25.59×9.25×24.09" / Weight: 32 lbs / Integrated HUE lighting for illuminating the exterior/interior of your enclosure with option to turn on/off and allow you to customize the colors at your heart’s content / integrated 4 channel digital fan controller with 15 watts per channel and LED indicators that progressively gets brighter on higher speeds / easily removable air filters located in the top+front+side+bottom to prevent dust entry / Adjustable interior pivot 120/140mm fan slot for directional airflow / Removable HDD cage and large storage capacity for 6 hard drives / Stylish acrylic window with a view to show off the interior of your rig / Unrivalled Cooling Capacity to mount up to nine fans for a maximum airflow / Rear I/O white light for visibility in dark environments with a toggle switch / Extruded right side panel for an elegant look and achieves 36mm clearance for cable wire management / Equipped with a stylish pedestal that lifts your enclosure off the ground for increased airflow.

building computer.
NZXT Phantom 820 computer case, harddrive cage.
Thailog.

upstairs, Clint and Carolyn’s house, Alexandria, Virginia.

March 17, 2015.

… Read my blog at ClintJCL at wordpress.com
… Read Carolyn’s blog at CarolynCASL at wordpress.com

BACKSTORY: Building my new computer! We decided to name it Thailog. Thailog ("Goliath" spelled backwards) is the evil twin of Goliath from the cartoon Gargoyles. Carolyn’s computer is named after Goliath, so it just makes sense that Clint’s computer is the evil twin of Carolyn’s computer. A quick summary of the computer’s specs is: Intel Core i7-5820K Haswell-E 6-Core 3.3GHz with an Arctic Freezer I30 cooler on a ASRock X99 WS EATX motherboard with 24G of Crucial Ballistix Sport DDR4 2400mHz RAM, a Radeon R9 270 video card, and a Crucial M500 240GB M.2 SSD…all inside a massive NZXT Phantom 820 case. It was a $1560 build, summarized on my blog at clintjcl.wordpress.com/2015/03/06/journal-hardware-purcha…

Posted by Clio CJS on 2016-05-10 11:54:38

Tagged: , 20150317 , 201503 , 2015 , Virginia , Alexandria , Clint and Carolyn’s house , upstairs , Thailog , building computer , building , computer , building computer Thailog , building computer Thailog 20150317 , hardware , case , case hardware , computer case , computer case hardware , NZXT , NZXT hardware , NZXT case , NZXT case hardware , NZXT computer case hardware , NZXT Phantom 820 , NZXT Phantom 820 hardware , NZXT Phantom 820 case , NZXT Phantom 820 case hardware , NZXT Phantom 820 computer case , NZXT Phantom 820 computer case hardware , Phantom 820 , Phantom 820 hardware , Phantom 820 case , Phantom 820 case hardware , Phantom 820 computer case , Phantom 820 computer case hardware , harddrive cage , cage , harddrive

20150317 – Thailog – z – case – top – top lid removed – z – case-specific controller & controls – IMG_0242

20150317 - Thailog - z - case - top - top lid removed - z - case-specific controller & controls - IMG_0242

The case had its own lighting system – the white lights in the back for hooking things up, and the internal/trim lights that can be color-changed with the dial on the right. It’s all done with SATA power cables, as there are usually extra ones of those on power supplies. This little board here is the logic for all that.

My case: By far the best I’ve ever owned, though it has a fatal flaw with harddrive noise in certain harddrive cages, and I wish the windows were bigger, and I wish the color-cycling could be automated. But still: This NZXT Phantom 820 Series case was $199.99 from NewEgg. "CA-PH820-M1 Matte Black St" / 2 yr warranty / Steel & Plastic / Power Supply Mounted: Bottom / Motherboard Compatibility: Micro ATX / ATX / Mini ITX / E-ATX / XL-ATX / Side Panel Window / Expansion: External 5.25" Drive Bays:4 / External 3.5" Drive Bays:No / Internal 3.5" Drive Bays:6 / Expansion Slots:9 / Removable Filter / Front Ports: 2xUSB3.0 + 4xUSB2.0 + Audio + SD Card Reader /Fans: 1x140mm Rear + 1x200mm Front + 1x200mm Top + 1x200mm Side Fan / Side Air duct: No / Dimensions:25.59×9.25×24.09" / Weight: 32 lbs / Integrated HUE lighting for illuminating the exterior/interior of your enclosure with option to turn on/off and allow you to customize the colors at your heart’s content / integrated 4 channel digital fan controller with 15 watts per channel and LED indicators that progressively gets brighter on higher speeds / easily removable air filters located in the top+front+side+bottom to prevent dust entry / Adjustable interior pivot 120/140mm fan slot for directional airflow / Removable HDD cage and large storage capacity for 6 hard drives / Stylish acrylic window with a view to show off the interior of your rig / Unrivalled Cooling Capacity to mount up to nine fans for a maximum airflow / ±Rear I/O white light for visibility in dark environments with a toggle switch± / Extruded right side panel for an elegant look and achieves 36mm clearance for cablewire management / Equipped with a stylish pedestal that lifts your enclosure off the ground for increased airflow.

building computer.
NZXT Phantom 820 computer case, computer controller, controller, lid.
Thailog. close-up.

upstairs, Clint and Carolyn’s house, Alexandria, Virginia.

March 17, 2015.

… Read my blog at ClintJCL at wordpress.com
… Read Carolyn’s blog at CarolynCASL at wordpress.com

BACKSTORY: Building my new computer! We decided to name it Thailog. Thailog ("Goliath" spelled backwards) is the evil twin of Goliath from the cartoon Gargoyles. Carolyn’s computer is named after Goliath, so it just makes sense that Clint’s computer is the evil twin of Carolyn’s computer. A quick summary of the computer’s specs is: Intel Core i7-5820K Haswell-E 6-Core 3.3GHz with an Arctic Freezer I30 cooler on a ASRock X99 WS EATX motherboard with 24G of Crucial Ballistix Sport DDR4 2400mHz RAM, a Radeon R9 270 video card, and a Crucial M500 240GB M.2 SSD…all inside a massive NZXT Phantom 820 case. It was a $1560 build, summarized on my blog at clintjcl.wordpress.com/2015/03/06/journal-hardware-purcha…

Posted by Clio CJS on 2016-05-10 11:37:19

Tagged: , 20150317 , 201503 , 2015 , Virginia , Alexandria , Clint and Carolyn’s house , upstairs , Thailog , building computer , building , computer , building computer Thailog , building computer Thailog 20150317 , close-up , lid , hardware , controller , case , case hardware , computer case , computer case hardware , NZXT , NZXT hardware , NZXT case , NZXT case hardware , NZXT computer case hardware , NZXT Phantom 820 , NZXT Phantom 820 hardware , NZXT Phantom 820 case , NZXT Phantom 820 case hardware , NZXT Phantom 820 computer case , NZXT Phantom 820 computer case hardware , Phantom 820 , Phantom 820 hardware , Phantom 820 case , Phantom 820 case hardware , Phantom 820 computer case , Phantom 820 computer case hardware , computer controller