My take on Lumix LX5

My take on Lumix LX5

LX5 on Domke F-3X gray.

Nikon D60 | AF-S DX Nikkor 35mm f/1.8G


As I think many people ran into my photostream looking for LX5 images before deciding which camera to buy, below I’d write my thoughts on this compact camera. Some may find it useful.
Please note that Panasonic issued the first firmware update (Ver.2.0) on September 13th, 2011, and most of the content here was written before the update. I have added/will add a few points regarding the update (written in bold).

– What I like and dislike about LX5

I like
1. a fast lens starting at 24mm up to the convenient 90mm.
2. moderate performance in low light. I don’t mind using up to ISO800 but other people may have a different opinion on that.
3. O.I.S. (Optical Image Stabilizer) – it seems working pretty good.
4. Good dynamic range
5. Good AWB. I’m impressed. (This was compared to my old Ricoh GX100. Now I don’t feel it so special..)
6. Hardware switch for aspect ratios – very convenient.

I dislike
1. stiff dial on the back. I sometimes unintentionally switch exposure/aperture modes by trying to adjust one of them.
2. C1 & C2 custom settings which don’t remember some things I want them to remember, like zoom length and f stop. So they are practically useless to me.
3. AF setting which doesn’t remember the size of AF area. I prefer to keep it at the smallest but it goes back to the default size once you turn the camera off. (And C1 and C2 don’t remember it either.)
With the firmware update (Ver. 2.0), now the size of the AF area is stored!
4. screen!!!! At first, you would really like it, but a) it crams too much information in a display, and more importantly b) the color of images on a display looks so differently from what it really captures (the display on LX5 is too bright and colors are a bit saturated, or tinted). When you look at the images on the computer home (I have a color calibrated monitor), I get quite different impression often times. If you can’t trust color of the display on the camera, how do you adjust the shooting settings?
With the firmware update (Ver. 2.0.), now you can adjust the LCD display regarding brightness, contrast & saturation, red tint, and blue tint.

– Other thoughts

Image quality is more than satisfactory to me for a P&S or sub camera (but I’m not comparing with LX3 which some people claim produces better images). Looking at some shots I took, I actually feel a longer tele seems made possible at the expense of IQ at the widest.

I rarely, if ever, shoot videos so I can’t comment a lot on that. But one thing I found confusing was its file type (Note: I never shot videos before buying this camera). As the motion jpeg requires a lot file size, I shot videos in AVCHD and had a trouble finding a way to PLAY it (.mts) on my computer. What I eventually did is to first install Windows 7 Live Movie Maker (free) and then convert the mts file to a wmv file. (This paragraph was added in January 2011)

Many people complain about the lens cap but it doesn’t bother me much (it’s the same as SLR lenses). I actually prefer this way in terms of protection from dust. I owned GX100 with LC-1 attached which had a slight gap so it let some dusts in.

Overall, I think it’s a nice P&S camera, though with some issues. I still miss the great ergonomics and user interface of Ricoh GX100, but the image quality and high ISO performance easily beats the old generation camera. The LCD screen is the biggest problem to me so far.

My deciding factor compared to s95 (as many people choose between them; g12 and p7000 are too bulky compared to these two models) by the order of importance;

Wider zoom (24mm vs. 28mm, although I believe the latter is wide enough for most people)
Macro capability (1cm vs 5cm closest focus)
Shutter speeds (60 to 1/4000 sec vs 15 to 1/1600 sec)
Better holding and handling
Longer battery life

The first two items were particularly important to me as my old GX100 had those features. But BOTH LX5 and s95 are great cameras. You just need to understand what you need for a P&S. For example if your priority is the size, then no-brainer, pick the s95.

Posted by Lindeberg Feller on 2010-11-14 03:40:09

Tagged: , Nikon , D60 , AF-S , DX , Nikkor , 35mm , Panasonic , LUMIX , DMC , LX5 , Domke , F-3X , shoulder bag , camera , Gray , 700-30G

Cute as a button

Cute as a button

If you enjoy this photograph, I encourage you to open my Flickr photo set for: Native Americans:

After crossing the dirt road of Union Pass at 9,000 ft. I dropped down to the paved highway leading to Dubois, Lander, and South Pass, Wyoming.

I planned to stop at Lander to gas up the car and get something to eat. Road trip serendipity struck again! A lively small, city park held, Eastern Shoshone Indian pow wow in Lander, Wyoming. Oh boy.

Park the car, grab a camera and enjoy the beat of the tom toms, the contagious movement of age old dance steps, and the beautiful dance costumes, using traditional (shells, porcupine and deer hair, eagle feathers, leather) and modern (brightly colored ribbons of plastic and silk), materials.

When a "tourist dance contest" was announced, the biggest (and fortunately the friendliest) tom tom drummer with a "Big Chief" sleeveless T-shirt, tried to persuade me to join the dance and hand him my camera so he could do some picture taking. I declined but I should have danced…what the heck.

I marveled at the finely traditional design costumes and dance regalia but the biggest hit, as with many gatherings, were the young Shoshone, running around, having fun, chasing each other, but participating in some of the dances when asked. Youth…what a big new world is always in front of them.
Union Pass, Wyoming & Green River/Horse Creek – Road Trip.

I had been suffering from what felt like "walking pneumonia" for a couple of weeks, and had just started feeling a little better. I decided what would do me a lot of good, would be get on a road trip.

I left my hiking and backpacking gear at home, and determined to just enjoy driving back roads and visit and travel a few historic and scenic places along the way. A "windows down", back road, take your time….road trip.

DAY ONE: I drove the freeway from my home in Eastern Washington to Pocatello, Idaho on day one. I got a good night’s sleep at a motel in Pocatello and started driving early the next morning, with back road routes on my mind.

DAY TWO: I headed south a short ways on I-15 then turned east on highway 30. I would travel in reverse a scenic back highway route, that I had driven for the first time a year ago. I drove through Lava Hot Springs; Soda Springs; Henry (a major city); and over to Freedom – – on the Idaho and Wyoming border.

From Freedom it was north to Alpine, Wyoming then highway 26 to Hoback Junction. The stretch of highway from Alpine to Hoback Junction was a "zoo". LOTS of people traveling to squeeze in that last vacation before school starts.

There were so many river rafters (commercial) carrying 12 to 16 "river tourists" like eggs in a double wide carton, on the Snake River, that you could walk across the river and up and down the river without getting your feet wet, jumping from overcrowded rubber raft to the next. All the support camps and transport buses added to the carnival like atmosphere. Though not for me, those on the commercial rafts seem to be having a great time, and that is what life is all about.

Most of the automobile traffic headed north towards Jackson, Wyoming at the Hoback Junction. I turned up the historic Hoback River road (hwy 189/191) and enjoyed less traffic and great scenery as I headed for Daniel Junction via Bondurant.

Before I reached Daniel Junction though irony and serendipity converged and I came upon a "wildfire fighting camp", just off the highway and spread out across a sage brush flat.

I had moved a photograph of the victims of Mann Gulch up to the front of my Flickr photostream page just before I left home. August 5th, 2013 was the 64th anniversary of the Mann Gulch fire fatalities, and it just seemed like something I wanted to do.

Also I had just finished reading the story of the 1994 fire fighting tragedy of Storm King Mountain in Colorado. I had also been exchanging a few emails with a person telling me they were friends with the sister of one of the Mann Gulch victims (David Navone).

So, as I left my home, it seemed as though "wildfire" stories were very much in my mind, including the most recent incident at Yarnell, Arizona ~ where 19 firefighters lost their lives.

There were no signs telling the public to keep out, so I drove in to see a wildfire fighting camp first hand. I drove slowly, and moved completely off the road when any "official" vehicle came the other way. I did not want to interfere in anyway with the job they were doing.

I drove to far end of the camp to the Helitack unit. I parked off in the sage brush and asked two firefighters if I could take some photos, if I stayed out of the way. Permission granted. Then I drove back on the dirt road, to the center of the operation. What a collection of agencies there were. I saw signs and personnel of the forest service; BLM; Homeland Security; and every fire fighting agency and group you could imagine.

Again, I approached some of the men appearing to be in charge, and asked if I could take some non-commercial photos if I stayed out of the way. Permission granted. My car was parked off the road in front of what appeared to be the mess tent.

I clicked away at the "mobile shower" unit; the chow line trailer; the mess hall tents; the "sleeping" camp tents, and so forth. I finally ended up at a yurt that appeared to be an "information center", with one fellow working on a computer and maps of the fire fighting activity around the inside.

When I asked if I could take some photos of the inside of the yurt, again permission was granted but a young lady asked if she could speak to me, after she finished up a conversation with one of the firefighting people.

Her name was "Holly". She said she was the public relations and public information "manager" for the operation. Though she said she was not an employee of the BLM or Forest Service or any other agency, she appeared to be "official" and recognized as such by all those in camp.

Holly told me she could escort me around and that I could probably take photos of most everywhere we went. I sheepishly admitted, I had already "toured the area", asking permission as I went, staying out of the way, but had taken LOTS of photos. She grinned.

Holly took me around the heart of the camp and gave me a lot of interesting information about the operation. I found out that the mess hall was being operated by "inmates", who had one guard with them and were being paid $200 a day for their work. Holly said all of them were polite and did everything they could not to do something to spoil being able to work outside and be able to see the stars in the night sky, when their work day was done.

I spent a lot more time at the fire camp than I had intended but it was so interesting, timely, and informative … that I had a hard time leaving (especially when I met the official camp dog, a large easy going loveable black Labrador Retriever).

I told Holly of my intentions to visit the Green River Rendezvous "exact site" on this trip and then drive up over historic Union Pass towards Dubois, Wyoming…a dirt road that would take me over the north end of the Wind River Range. She told me that there were a few active fires in the area, but didn’t think I would have trouble crossing the pass or camping in the area.

I left the fire camp and drove to Daniel Junction to get a bite to eat, gas up the RAV4, and see if I could find a road that would take me as close as I could get to where Horse Creek joined the Green River.

I had visited and photographed the Green River from Trappers’ Point Monument last year, but that was three miles down the Green River from where the center of the fur trappers’ rendezvous had taken place and I wanted to see the exact location as close as I could come to it.

The rendezvous system was unique. Supplies were brought in from St. Louis by wagon. Mountain men, Indians, missionaries, an artist or two, overland travelers – – all showed up. It was primarily a place and an event, to allow the Mountain Men to sell their beaver pelts, and buy up supplies for the next year of trapping (without the need to travel to and from St. Louis). It was also a time for them to spend much of their money earned on gambling and drinking. There were horse races, tall tales, and a celebratory atmosphere to the whole thing. A rendezvous might last three or four weeks. A good time was had by many and most.

The 1833, 1835, 1836, 1837, 1839, and the last rendezvous of 1840 – – all took place at the confluence of Horse Creek and the Green River. The lay of the land remains much like it was then but private ranches and farms now fill the entire area around the confluence.

I took the wrong turn and ended up visiting the Fort Bonneville site first. It has quite a history of its own as does Captain Bonneville (Spy, agent, military man, fur trader, or all of the above?).

Then I returned to Daniel Junction and took the correct turn to Daniel, Wyoming, where I parked my car and went into the small town post office at Daniel. I was armed with maps and questions. Fortunately I met another helpful type.

Holly had been of great help at the fire camp and now "Dee" was more than happy to give me exact, accurate, and precise information about the De Smet memorial, where I would have outstanding landscape views and be able to look down right at the confluence of Horse Creek and the Green River.

I hurried off and followed Dee’s instructions to the letter, and arrived at what she told me would be a place of outstanding views. I took photograph after photograph of this interesting site. A private ranch is at the end of the road. There is a cemetery. A tall water tank tower.

A stone monument where Father De Smet performed one of the first Catholic masses in the west. And then there was the incongruent boulder and plaque monument to: Pinckey W. Sublette. He was the youngest of the five Sublette brothers, several of whom were famous participants in the fur trading, trapping, and rendezvous activities.

I haven’t been able to find much information about Pinckey Sublette, but I will keep looking. This is what makes a road trip so much fun. Finds like this, that ask questions that demand attempts at answering them.

I returned to Daniel and took a cold can of soda and a few Pocatello, Idaho cinnamon rolls into Dee, and to thank he for helping me out with directions.

Now to Union Pass….or so I hoped. I had a bed made out in the back of my RAV4 and also had an inexpensive but functional "camp tent" with me. My thought was to camp up high near Union Pass and hopefully be out of mosquito territory, by being up high, where the nights should be cool (or so I of course hoped). I did note that one of the lakes I would travel by on my drive up over Union Pass, would be……Mosquito lake.

I had spotted a wild fire from the De Smet Monument, which I could see burning in the Wind River Range in the distance. I didn’t know it then, but what I was seeing was the Kendall Mountain fire, which was being allowed to burn, as long as it didn’t threaten the ranches and buildings to in the valley to the west. Seems aspen need a good fire to do well and this was part of the strategy of letting the Kendall fire to continue to burn within a perimeter agreed to by the fire fighting managers.

I drove toward Pinedale, Wyoming and then turned north on highway 352. This was the paved highway that would take me to the dirt, Union Pass road. I had never driving this highway and I had never crossed Union Pass. The pass had been on my "to do list" for a few years, and it felt great to be on my way.

I had made a note to check out the Kendall Dace, along the way. They are two inch long freshwater fish, that occur no other place in the world. They live in a hot springs creek where the water temperature stays at 84 degrees, all year round.

As it turned out, I got so caught up with the scenery, the wildfires,- – that I forgot to take the turn toward the Green River Lakes, and see the dace. A good excuse for a return to the area.

The Union Pass dirt road was fun to drive. Windows down but I had to roll them up from time to time, when ATV riders came by the other way. There were plenty of them and they all seemed to be having a great time despite all the dust they had to eat, from time to time, traveling the road.

I got on a long stretch of the dirt road with no ATVs in sight, and I saw a lone backpacker hiking north, the same direction I was heading, along the road. I slowed way down so I wouldn’t cover him in a cloud of dust as I passed him.

He was a young man (30s), in outstanding shape, tanned, carrying a large internal frame pack that was perfectly organized. He had a smile on his face that only a skilled, competent, motivated, and dedicated backpacker can have.

His name was Gary. He had, what to me was a strong English accent, but when I asked where he was from he said the Adirondacks. I smiled and said "then you know of the only black bear in North America, who has learned the trick to opening "bear proof" bear vaults." He laughed and in his nice English accent added "….and she has a cub now that has learned the trick as well".

I offered Gary an ice cold soda from my ice chest giving him a choice of Pepsi or caffeine thick Mt. Dew. He went for the can of Mt. Dew. He asked where I was headed and I told him Union Pass, but I half expected to run into a road block, due to all the fire activity I was seeing in the area.

He told me he was looking for the Gros Ventre trail head. I told him he had missed the best part of the Wind River Range by not hiking the Cirque of Towers and/or the Titcomb Basin area. Again he smiled, and said that he had started his hike at the south end of the Wind River Range, so he hadn’t "missed much". He told me he had got off the route due to the wildfires and was no planning to backpack to Jackson, Wyoming.

Gary spotted my Wyoming topo atlas on the seat and asked if he could have a look. It seems, when he had abandoned his original route due to the fires, he didn’t have any map at all for his proposed "detour" to Jackson. He fixed that by taking my topo map atlas and spreading across the hood of my car, and taking photos with his cell phone. Smart thinking.

I offered to move my stuff around so I could give him a ride to where he would leave the road for a trail, but he seemed happy and determined to "walk". I took his empty can of Mt. Dew and then gave him a large cold plastic bottle of Mt. Dew, which he gladly accepted, then we parted ways. Holly, Dee, and now Gary. You meet the nicest people on a road trip.

My drive over Union Pass (the historic route over the continental divide north of the Wind River Range) and dropped down to the highway north of Dubois. I now started for Lander, Wyoming with the thought of a motel room there OR keep driving and camp among the sage on South Pass (the historic wagon trail route over the Continental Divide, south of the Wind River Range).

I watched antelope and wildfire smoke on my drive toward Lander, Wyoming. The wind picked up and it seemed as though a storm might be on the way. Then serendipity struck once again on this road trip. A pow wow. Outstanding. I always love to attend a Native American pow wow. The beating of the drums, the chants, the dancing and most of all the fascinating costumes. And now, here was one going on in a small park in Lander, Wyoming on a week day (31 July 2013).

I grabbed a camera and headed for the dancing. What fun! Snap, snap, snap went my camera shutter. The Wind River reservation is home to both the Northern Arapaho and Eastern Shoshone. The Arapaho outnumber the Shoshone on the reservation two to one. Sacagawea was a member of the Lemhi Shoshone band of Northern Shoshone.

After many traditional dances, the MC invited spectators to dance and that the best would be given "Sacagawea" metals, with the Indians serving as judges. The tom toms started up and a lively and brave group of "tourists" did their best. I was standing by the tom tom and chanting group, when the biggest of the four, encouraged me to join the dancing and to hand him my camera and he would take photos. I convinced him that I would be an embarrassment to all present if I danced…so he let me off the hook.

Like the fire fighting operation between Bondurant and Daniel Junction, I had a hard time leaving the pow wow…though it seemed to be winding down to its conclusion. I didn’t want to get a motel and the wind was still picking up, so I decided to drive to South Pass. A few years ago I had parked my four wheel drive pickup among the sage and hiked the gentle saddle that is "South Pass".

I had always intended to return on day and spend the night at this historic crossing and this night seemed to be the "right night" to do so. I drove into the dark and remembering well the lay of the land at South Pass, drove to a prominent point among the sage and bedded down in the back of my RAV4 for the night. The Milky Way was bright at this high desert pass and I got a good night’s sleep. I had covered a lot of back roads and enjoyed many wonderful experiences on this second day of my road trip.

Looking at my map that night with the aid of my LED headlamp, I saw for the first time that the Continental Divide splits south of South Pass. It travels around the Great Divide Basin of Sweetwater county Wyoming. I hadn’t realized that such a basin exists. Water flowing off the continental divide almost always ends up in the Pacific or the Atlantic ocean but not here in Wyoming. Here the water flowing into the Great Divide Basin…goes nowhere, except the basin itself.

DAY THREE -SIX: Leaving South Pass early I headed for Salt Lake City. There I spent Thursday, Friday, Saturday, and Sunday with my wife, kids, and granddaughter. On Sunday we took our 10 month old granddaughter to the Salt Lake City zoo. What a hoot…for her…and for all of us.

DAY SEVEN: I left Salt Lake City and drove the freeway to Ontario, Oregon. There was lots of smoke in the air all the way across Idaho. A dust storm came up outside of Boise, and strong winds continued all the way to Ontario, where I got motel room for the night.

DAY EIGHT: Looking over maps at a big chicken friend steak, gravy, hash browns, and eggs breakfast at Denny’s, I decided to take my time going on home and drive a couple of roads I had never driven before. So, I skipped the freeway and headed from Ontario to Vale and up over the Blue Mountains.

Oregon highway 26 from Vale through Brogan and Unity and on to Bates, Oregon – – was fun driving. Relaxed. I saw a black angus chasing a coyote across a pasture (too close to a calf). I checked out campgrounds for future reference and use all the way across the Blue Mountains, finding one I favored.

Then at Bates I took a road never before traveled. I drove the Middle Fork of the John Day River from Bates to highway 395. The canyon was pretty but the river seemed sad with all the cattle traffic it endured, more like a moving water trough and cattle toilet, than I fine clear country stream. White tail deer raced me along the road in several places and I enjoyed the blue heron, fishing along the river banks as I drove with my window rolled down.

Once on Oregon 395 I was on familiar road, as I drove north, but just to get in one more "new" section of back road, I took the Butter Creek Road to reach Hermiston, Oregon. That was fun and beautiful farm country. At Hermiston, I once again gassed up the car, ate too much fast food, and headed for home.

I hope you enjoy some of the photographs of the people and places, I took along the way on this short week long road trip.

OMT 14 August 2013

Posted by oldmantravels on 2013-08-19 16:47:44

Tagged: , Eastern Shoshone pow wow Lander , Wyoming Wind River Range reservation Native American dance costumes eagle feathers road trip Lander , Wyoming Native American culture , customs , and costumes

Going Back To Your Ex Quotes – Broken Heart Poems and Quotes Can’t Bring Your Ex Back, But These 4 Tips Can

Going Back To Your Ex Quotes – Broken Heart Poems and Quotes Can’t Bring Your Ex Back, But These 4 Tips Can


Almost everyone has to face a breakup at one point in their lives. A breakup can be a very trying experience. And, even if you have faced multiple breakups in the past, it doesn’t make the one you are going through right now any easier.

Following a breakup, the first thing many people do is to wallow in their heartbreak. We look for broken heart poems and quotes to make us feel better. After all, we all want to find solace in the words of others who have been through what we are going through right now. Of course, what makes the pain even more acute is that we often want to get our ex back.

Trouble is, broken heart poems and quotes can’t get your ex back. And, after all, maybe the breakup was for the best. If your ex was abusive or violent, it is best that you stay apart and go find someone better – because going back to an unhealthy relationship isn’t good for anybody.

However, if your current breakup involves a relationship that is worth saving, here are 4 tips that can help you get them back.

1. Apologize to your ex:

Apologizing to your ex is the first step in getting him or her back. Of course, saying sorry alone won’t be enough to get him or her back, but it is definitely one of the important first steps. After a breakup, it can be easy to blame the other person for the whole thing. However, usually we ourselves are at least partly to blame for being in our current situation.

Focus your apology on 2 – 3 of the key mistakes you made in your relationship. Avoid going on for hours about how terrible you were, and don’t rattle off a list of a thousand things you did wrong. Rather, make your apology short and succinct. Of course, make sure that your apology doesn’t drag the two of you into an argument. If you say you’re sorry and your ex chimes in with their own example of how terribly you acted, make sure you don’t get defensive. Instead, just let them have their moment to vent – the painful moment will pass, I promise! Going Back To Your Ex Quotes

2. Take the time to talk about it

See if you can get your ex to agree to meet you for a cup of coffee or lunch. (Do not beg – just ask nicely and see what happens! If they won’t agree to meet with you just yet, just move on to Step 3).

When you meet, make sure to contain your deeper emotions. The last thing either of you needs is to make an already-unstable situation worse by crying or getting into a fight! Make sure your ex knows that your intention is not to blame him or her. Just focus on the key issues and talk it out.

3. Give him or her some space

At first, giving your ex more space may seem like strange advice. After all, isn’t the goal to get back together, not stay apart? However, observing this step is key. Spend a bit of time away from each other. Doing this will allow the heavy emotions to subside a bit, and even more importantly, it gives your ex the chance to miss you a bit.

4. Show them you respect yourself

In a situation where you want to get back together with your ex, it is always to your advantage to work from a position of strength, not weakness. Strength is beautiful, strength is attractive, and strength is the first component of getting what you want. If you seem desperate and needy, your ex will feel almost no motivation to reunite with you. Another way to respect yourself is to take care of the way you look. Put a little extra effort into your physical appearance. Start working out or taking walks. Do your hair a different way. Get some new clothes.

If you are searching for a way to mend your relationship and get your ex back, skip the broken heart poems and quotes. Instead, put your effort and energy into getting him or her back.  

Going Back To Your Ex Quotes

Can’t get over your ex? Regret what you have done? Try Win Back My Ex and get your ex back right now! You’ll regret for life if you miss last chance of getting Win Back My Ex

Related Replicant Urbanism Articles

Die Ernte / The Harvest

Die Ernte / The Harvest

Ein Mähdrescher ist eine landwirtschaftliche Erntemaschine zur Ernte von Körnerfrüchten wie insbesondere Getreide, aber auch Raps, Sonnenblumen, Ackerbohnen, Grassamen oder Ähnlichem. Wie die zusammengesetzte Bezeichnung (vgl. auch im Englischen: combine harvester) andeutet, kann der Mähdrescher mehrere Verfahrensschritte in einem Arbeitsgang erledigen, insbesondere die Mahd und den Drusch der Körnerfrüchte.

Vorne am Mähdrescher ist das Schneidwerk oder ein Erntevorsatz angebaut. Diese nehmen das Erntegut vom Feld auf, ein Schneidwerk übernimmt überdies die Aufgabe des Mähens. Je nach Art der Druschfrüchte kommen verschiedene Schneidwerke zum Einsatz.

Da heutige Arbeitsbreiten die auf öffentlichen Straßen maximal zulässige Breite von drei bis dreieinhalb Meter meist übersteigen (Arbeitsbreiten von fast 14 Meter für Getreide und 12 Meter für Mais sind möglich), kann das Schneidwerk für Straßenfahrt entweder abgebaut oder (hydraulisch) zusammengeklappt werden. Das abgebaute Schneidwerk wird mit einem Schneidwerkswagen transportiert, welcher entweder vom Mähdrescher selbst oder einem anderen Zugfahrzeug gezogen wird.

Ein Schneidwerk besteht aus dem Schneidtisch sowie Halmteilern, welche die Getreidehalme der zu mähenden Bahn von dem noch stehen bleibenden Getreide abteilen, ggfls. Ährenhebern, welche liegende Getreidehalme (Lagergetreide) unterfahren und aufrichten sollen, der der Zuführung der Getreidehalme zum Mähwerk dienenden Haspel[1], dem Fingermähwerk und der Einzugsschnecke bzw. dem Förderband, welche das Schnittgut dem Dreschwerk zuführen.
Bei der Ernte von Raps werden zur Trennung der Schnittbahnen an den Seiten des Schneidwerkes seitlich senkrecht stehende Scherenschnittmesser angebaut und der Schneidtisch wird verlängert. Raps fällt sehr leicht aus den Samenständen heraus, und die sich verzweigenden Einzelpflanzen verhaken sich miteinander. Durch ein Auseinanderreißen der untereinander verworrenen Rapspflanzen würde es zu erheblichen Kornverlusten kommen. Die Verlängerung fängt die Samen auf, die von der Haspel ausgeschlagen werden.

Maispflücker oder Maisgebisse sind so konzipiert, dass die Pflanzenstängel bei der Überfahrt durch einen schmal zulaufenden Spalt gezogen und nur die dabei abgepflückten Kolben dem Dreschwerk zugeführt werden, während ein unter dem Tisch angebrachtes Häckselwerk die Reste zerkleinert. Für Getreide gibt es außerdem Ährenstripper oder auch nur Stripper genannt. Diese arbeiten nach demselben Prinzip wie Maispflücker. Von Vorteil ist, dass das Stroh nicht durch die Maschine muss, und sich somit die Stundenleistung des Mähdreschers erhöht.

Beim Drusch von Sonnenblumen werden die Blütenstände vom Stängel getrennt. Vom Aufbau ähneln Sonnenblumenschneidwerke den Maisschneidwerken.

Bei ungleichmäßig abreifenden Beständen wird die Frucht zunächst mit einem Schwadmäher abgemäht und auf Schwad abgelegt. Nach weiterem Abreifen der Frucht im Schwad nimmt der Mähdrescher diese mit einer Pick-Up zum Drusch auf.

Der Schrägförderer trägt den Erntevorsatz. Innen läuft eine Einzugskette, die das Erntegut von der Einzugsschnecke übernimmt und es dem Dreschaggregat zuführt.

Unmittelbar am Ende des Schrägförderers befindet sich eine Steinfangmulde. Die Dreschtrommel soll die schwereren Steine dort hineindrücken. Da Rotormähdrescher besonders empfindlich auf eingezogene Steine reagieren, gibt es Systeme, bei dem die Steine durch Klopfsensoren erkannt werden und sich bei Steinerkennung der Boden des Schrägförderers öffnet, so dass der Stein wieder auf den Boden gelangen kann.
Das Dreschorgan besteht aus einem Dreschkorb, in dem sich entweder eine Dreschtrommel oder ein Rotor mit hoher Geschwindigkeit drehen. Der Spalt zwischen Trommel/Rotor und Korb ist sehr eng. So wird das Korn aus dem Stroh ausgerieben und fällt durch die Maschen des Korbes. Etwa 90 % der Körner werden durch das Dreschaggregat vom Stroh getrennt und gelangen direkt in die Reinigung, lediglich das Stroh und darin noch enthaltenes Restkorn gelangen zur Abscheidung. Je nach Art der zu dreschenden Frucht kann über die Variation der Trommeldrehzahl und eine Veränderung des Dreschspaltes zwischen Dreschtrommel und Dreschkorb die Intensität des Druschs variiert werden.

Noch intensiver dreschen kann man durch verschließen der ersten Korbreihen, oder durch den Einbau von Reibleisten. Das ist notwendig, wenn Grannen von Gerstenkörnern abgebrochen werden sollen oder wenn Früchte gedroschen werden, bei denen die Samen sehr fest in den Blütenständen sitzen. Die Abscheidefläche des Korbes verringert sich dabei.

Vom Dreschaggregat gelangt das Erntegut zur Abscheidung, wo die restlichen Körner und nicht vollständig ausgedroschene Ähren vom Stroh getrennt werden. Die Abscheidung erfolgt meist über einen sogenannten Hordenschüttler. Dieser besteht aus mehreren versetzt an einer Kurbelwelle befestigten ca. 20 cm breiten sägezahnförmigen Rinnen, über die das Gut aufgrund der Schüttelbewegung nach hinten wandert, wobei das leichtere und sehr viel größere Stroh den ansteigend verlaufenden Schüttlern folgt. Die Körner und nicht vollständig ausgedroschene Ähren werden vom Stroh getrennt und fallen durch kleine Löcher in den Horden auf das Reinigungssieb. Bei axialen Abscheideorganen erfolgt die Abscheidung an einem oder zwei Rotoren, deren Funktionsweise einem Separator ähnelt. Unterhalb der Rotoren ist ein Korb (ähnlich dem Dreschkorb) angebracht, der das Stroh führt, bis es vom Rotor nach hinten aus dem Mähdrescher oder auf den Häcksler gelangt.

Das Reinigungsgut, bestehend aus Körnern und NKB (Nicht-Korn-Bestandteile = Spreu und Strohteile), gelangt vom Dreschwerk und weiteren Abscheideorganen (Schüttler oder Abscheiderotoren) zur Reinigung. Die Reinigung dieses Gemisches erfolgt in der Regel über zwei übereinander angeordnete Siebe, das Ober- und das Untersieb. Die Zuführung des Reinigungsgutes zu den Sieben erfolgt je nach Hersteller unterschiedlich:
a) Über einen Stufenboden (treppenförmiges Profilblech), der sowohl für die Förderung, als auch für eine gleichmäßige Verteilung in Längs- und Querrichtung und eine gewisse Vorentmischung zuständig ist. b) Über eine aktive Förderung mittels mehreren nebeneinander liegenden Schnecken, deren Hauptaufgabe darin besteht, innerhalb der Reinigung an Höhe zu gewinnen und das Reinigungsgut gleichmäßig den Sieben zuzuführen. c) Eine oder mehrere, mit Hilfe eines Gebläses, belüftete Fallstufen, die bereits vor Erreichen der Siebe einen großen Anteil der leichten Spreuanteile aus dem Reinigungsgut ausblasen. Damit wird vor allem erreicht, dass die Körner unter den NKB auf die Siebfläche auftreffen und zügig abgeschieden werden.

Beide Siebe werden von unten durch einen Luftstrom (Wind) belüftet. Dies sorgt für eine Auflockerung des Reinigungsgutes, wobei im günstigsten Fall eine so genannte Wirbelschichtphase entsteht. Dabei "schwimmen" leichte Anteile wie die Spreu und Kurzstroh auf und ermöglichen den wesentlich schwereren Körnern das Erreichen der Siebfläche.

Das Reinigungsgut gelangt von der Zuführung aus zunächst auf das Obersieb. Dieses hat im Wesentlichen die Aufgabe, Körner und unausgedroschene Ährenteile (Überkehr) zum Untersieb abzuscheiden und die NKB über das Siebende aus dem Mähdrescher zu fördern. Das Untersieb stellt die letzte Reinigungsstufe dar, wobei im Idealfall eine Kornreinheit von über 99,6 % erreicht wird. Das Reinkorn wird über eine Schnecke zu einer Maschinenseite (in der Regel in Fahrtrichtung rechts) und von dort mittels eines Elevators in den Korntank gefördert. Der Siebübergang des Untersiebes (Überkehr) besteht aus unausgedroschenen Ährenteilen, Körnern und Spreu. Diese Überkehr wird mit einer Schnecke zu einer oder beiden Seiten des Mähdreschers gefördert und von dort mit Hilfe einer weiteren Schnecke oder eines Elevators zum Dreschwerk oder den Förderelementen der Reinigung zurückgefördert. Hersteller, die die Überkehr zur Reinigung zurückführen, bauen auf dem Weg dorthin ein zusätzliches kleines Dreschorgan ein.

Da mit den NKB auch große Mengen an Unkrautsamen aus dem Mähdrescher gelangen, wird die Spreu ebenso wie das Stroh (sofern gehäckselt) bei Schnittbreiten über 3 Meter möglichst über die gesamte Arbeitsbreite verteilt, beispielsweise mittels scheibenförmiger Spreuverteiler. Durch Wechsel von Ober- und Untersiebbauarten sowie durch Variation der Windgeschwindigkeiten kann die Reinigung auf die zu dreschende Getreideart eingestellt werden. Sowohl die Frequenz als auch die Amplitude der Siebschwingung werden meist vom Hersteller vorgegeben und können nur mit großem Umbauaufwand geändert werden.

Der Getreidetank dient als Vorratsbehälter für das Korn und wird, oftmals auch parallel zum Drusch, über das Abtankrohr auf einen Transportanhänger oder einen Überladewagen entladen. Das Fassungsvermögen des Korntankes beträgt je nach Größe des Mähdreschers zwischen 5 und 12 Kubikmetern. Er ist im Allgemeinen so bemessen, dass im Getreide 15-30 min lang ohne Entleerung des Tanks gedroschen werden kann.

Am hinteren Ende des Mähdreschers, hinter den Dresch- und Abscheideorganen, wird das gedroschene Stroh aus dem Mähdrescher ausgeworfen. Das Stroh kann entweder zur späteren Bergung mit einer Ballenpresse auf Schwad gelegt oder gehäckselt werden. Zur Schwadablage verfügen Mähdrescher vielfach über Leitbleche oder Zinken, mit denen sich die Schwadbreite verstellen lässt, um diese auf die Presse anzupassen. Häufig ist bei neueren Maschinen ein Strohhäcksler montiert, der das gedroschene Stroh klein häckselt und es über die gesamte Schnittbreite verteilt. Das gehäckselte Stroh kann später in den Boden eingearbeitet werden und trägt so zur Erhöhung des Humusanteils bei. Bei immer größeren Schnittbreiten stellt eine gleichmäßige Strohverteilung heute eine große Herausforderung für die Hersteller dar.

Mit einer Nennleistung von 435 Kilowatt (591 PS) gilt der New Holland CR 9090[3] derzeit als der Mähdrescher mit der höchsten Motorleistung. Moderne Mähdrescher benötigen die Leistung vor allem für das Dreschaggregat, die Abscheideorgane und den Strohhäcksler. Abhängig von den Erntebedingungen und der Arbeitsbreite verbraucht alleine der Häcksler bis zu 20 % der verfügbaren Leistung. Da während des Dreschens sehr viel Staub entsteht, ist die Zuführung der Verbrennungs- und Kühlluft des Motors problembehaftet. Luftfilter und Kühler müssen daher durch maschinelle Einrichtungen sauber gehalten werden, was entweder mittels einer Absaugung, rotierender Bürsten oder durch ein Lüfterwendegetriebe geschieht. Das Wendegetriebe verändert die Drehrichtung des Kühlerventilators ab einer bestimmten Temperatur, so dass dieser den Kühler frei bläst.

Die ganze Maschine sitzt auf einem Fahrwerk, das von zwei großen und breiten Rädern (oft mehr als 80 cm breit) direkt hinter dem Schneidwerk und unterhalb der Kabine dominiert wird. Gelenkt wird über die hinteren, kleineren Räder. Beim Einsatz in schwierigem Gelände kommen Allradantriebe und auch vermehrt Raupenlaufwerke zum Einsatz, deren Vorteile zum einen in einer geringeren Bodenverdichtung und zum anderen in einer höheren Laufruhe der Maschine liegen, die besonders bei sehr breiten Schneidwerken von Bedeutung ist. Durch die Auslegung eines Mähdreschers als Hecklenker kann mit dem unmittelbar vor der Vorderachse montierten Schneidwerk ein sehr enger Wendekreis erreicht werden.

Da die optimale Fahrgeschwindigkeit beim Dreschen von vielen Faktoren abhängt (Motorleistung, Dreschverluste, Bestandsdichte, Lagergetreide, Bodenunebenheiten, etc.), ist es wichtig, dass die Geschwindigkeit des Mähdreschers stufenlos verändert werden kann. Dazu dienen meist Variator- oder hydrostatische Getriebe.

Anstelle des bei frühen Mähdreschern gängigen offenen Fahrerplatzes direkt hinter dem Schneidwerk und über dem Schrägförderer mit erheblicher Staub-, Lärm- und bei entsprechender Witterung Hitzebelastung des Maschinenführers ist bei modernen Mähdreschern fast ausnahmslos an gleicher Stelle eine geschlossene Fahrerkabine aufgebaut. Diese erlaubt einen wirksamen Schutz des Fahrers vor Staub, Lärm und Hitze und ist daher in der Regel klimatisiert und komfortabel für einen langen Arbeitstag (meist zwischen 10 und 14 Stunden) ausgeführt. Sie enthält auch die elektronischen Steuerungen und Anzeigen zur Einstellung und Überwachung aller relevanten Parameter des Mähdreschers (Motoranzeigen, Steuerung des Schneidwerks und des Dreschwerks, immer öfter Instrumente zur Ertragsmessung, teilweise kombiniert mit GPS-Erfassungssystemen).

Die Steuerung des Schneidwerks, des Abtankrohrs und der Fahrgeschwindigkeit wird mit einem Hebel durchgeführt, welcher ständig in der rechten Hand des Fahrers geführt wird (die linke Hand liegt am Lenkradknauf). Bei modernen Mähdreschern ist dies ein Joystick, der die Elektronik ansteuert. In älteren Modellen ist ein Hebel mit den Hydrauliksteuergeräten mechanisch verbunden. Durch Wahl der Hebelgasse wird die Funktion des Steuergeräts (Schneidwerkshöhe, Abstand Haspel/Schneidwerkstisch, Fahrgeschwindigkeit) gewählt. Weitere Hebelgassen können beispielsweise für Haspelgeschwindigkeit oder Dreschtrommeldrehzahl vorhanden sein, sind meist aber erst nach Lösen einer Sicherung zugänglich, um versehentliches Verstellen zu verhindern.

In den letzten Jahren werden vermehrt Steuerungs- und Kontrollaufgaben, die früher durch den Fahrer ausgeführt wurden, von automatisierten Einrichtungen übernommen. So wird beispielsweise das Schneidwerk auf einer vom Fahrer vorgegebenen Schnitthöhe automatisch den Geländeunebenheiten nachgeführt. Sensoren erfassen die Bodenunebenheiten, entsprechend der Sensordaten verändert die automatisierte Steuerung sodann Arbeitshöhe sowie Neigung des Schneidwerks. Ein weiterer Automatisierungsschritt sind selbsttätige Lenksysteme. Durch DGPS kann die Position des Mähdreschers auf dem Feld mit einer Genauigkeit von ± 10 cm bestimmt werden. Mit diesen Informationen führt der Bordcomputer den Mähdrescher parallel entlang der vorherigen Fahrspur über das Feld. Der Fahrer braucht das Steuer nur noch am Ende des Feldes in die Hände zu nehmen, um die Maschine zu wenden. Des Weiteren gibt es Systeme, die mit Sensoren die Menge des Dreschgutes messen und die Geschwindigkeit des Mähdreschers so anpassen, dass dieser immer mit optimaler Auslastung fährt.

Bis zur Mechanisierung der Landwirtschaft wurde Getreide manuell in mehreren Arbeitsschritten geerntet. Zuerst mähte man das Getreide mit Sichel, Sichte oder Sense ab und band es in der Regel zu Garben die man dann zunächst auf dem Feld stehen ließ. Diese Mahd erfolgte bereits vor der beim Mähdrusch erforderlichen Totreife des Getreides, das auf dem Feld in Garben aufgestellte Erntegut konnte auf diesem noch nachreifen und trocknen, sodass bei der Mahd weder Korn noch Stroh die notwendige Trockenheit zur Endlagerung haben mussten. In der Regel transportierte man die Garben sodann zum Bauernhof, dort wurde das Getreide, oft nach weiterer Lagerung in der Scheune auf der Tenne mit Dreschflegeln ausgedroschen. Anschließend reinigte man es durch sieben oder worfeln von der Spreu und Verunreinigungen wie Erde oder Unkrautsamen. Beim Worfeln wurden leichte Bestandteile des hochgeworfenen Druschguts wie die Spreu vom Wind weggeweht. Später wurden hierzu einfache handbetriebene Windfegen verwendet, bei denen ein Siebkasten das Getreide in einen darunter angebrachten Windkasten rieseln ließ; diese Windsichtung ist bis heute Bestandteil der Reinigungsstufe von Mähdreschern.

Mit der einsetzenden Mechanisierung wurden etwa ab 1786 zunächst stationäre Dreschmaschinen entwickelt, die Anfangs nur per Hand oder über Göpel durch Tiere angetrieben wurden. Später wurden Dampfmaschinen, Verbrennungsmotoren, Elektromotoren und andere Antriebe eingesetzt. Die erste Mähmaschine für Getreide wurde 1826 von dem schottischen Geistlichen Reverend Patrick Bell entwickelt. Mit der Erfindung des mechanischen Knoters 1857 wurde es möglich, Mähbinder zu bauen, die das Getreide vollmechanisiert zu Garben banden. Zunächst wurden diese Maschinen von Pferden gezogen und dabei über die Maschinenräder angetrieben. Mit Erscheinen brauchbarer Traktoren nutze man zunächst auch diese anstelle von Pferden zum Zug. Erst 1927 produzierte Krupp einen ersten Mähbinder, der unmittelbar über eine Zapfwelle vom Motor des Traktors angetrieben wurde.[4]

Aus der Kombination von Mähmaschine und fahrbarer Dreschmaschine entstanden die ebenfalls mobilen Mähdrescher. Bereits 1834 demonstrierten Hiram Moore und James Hascall in Michigan eine Maschine, die sowohl mähen und dreschen als auch reinigen konnte, die Arbeitsbreite betrug 4,60 Meter.[5] 1836 wurde ihre Maschine patentiert. Bis zu 40 Maultiere oder Pferde waren erforderlich, um diese Maschinen zu ziehen. Der Antrieb der Dresch- und Reinigungsorgane fand über eines der Räder statt. George Stockton Berry baute 1886 den ersten selbstfahrenden Mähdrescher, der von einer Dampfmaschine angetrieben wurde. Der Kessel wurde mit dem ausgedroschenen Stroh befeuert und versorgte auch den separaten Antrieb der Dreschorgane mit Dampf.[6] 1911 verwendete die Holt Manufacturing Company in Stockton, Kalifornien erstmal Verbrennungsmotoren auf Mähdreschern, diese trieben jedoch nur Dresch-, Abscheide- und Reinigungssystem an, und dienten noch nicht als Fahrantrieb.

Der erste selbstfahrende Mähdrescher eines deutschen Herstellers war der MD 1 der Maschinenfabrik Fahr, er wurde auf der DLG-Ausstellung in Hamburg im Jahr 1951 erstmals der Landwirtschaft präsentiert. Ein erster Rotormähdrescher wurde von New Holland im Jahr 1975 auf den Markt gebracht.
Bei der Abscheidung unterscheidet man zwischen zwei grundsätzlich verschiedenen Arten von Abscheideorganen.

Hordenschüttler: Bei herkömmlichen Mähdreschern erfolgt die Abscheidung über einen Hordenschüttler. Der Schüttler besteht aus vier bis sechs Horden, auf deren Oberseite widerhakenförmige Zacken angebracht sind. Alle Horden sind an zwei Kurbelwellen befestigt, die sich drehen. Es ergibt sich eine kreisförmige Exzenterbewegung der Horde: zuerst nach oben, dann nach hinten, dann nach unten, dann nach vorne. Wenn eine Horde am obersten Punkt ist, sind die daneben liegenden Horden am tiefsten. Auf dem Weg nach oben übernehmen die Horden so die Strohmatte von den daneben liegenden und führen sie mit den Widerhaken nach hinten. Bei der Abwärtsbewegung geben sie die Matte wieder an die daneben liegenden Horden ab. Leer laufen sie wieder in Fahrtrichtung nach vorne.
Dadurch wird das Stroh so aufgeworfen, dass die noch mitgeführten Körner durch die Strohmatte hindurchfallen. Unter jeder Horde ist eine Wanne auf der die Körner schräg nach vorne auf den Vorbereitungsboden laufen.
Der Schüttler ist jenes Abscheidesystem, welches das Stroh am wenigsten beansprucht und zerstört. Bei feuchtem oder unreifem Stroh sinkt die Abscheideleistung schnell. Bei der Fahrt bergauf steigen die Verluste ebenfalls, weil die Hangneigung der Schüttlerneigung entgegensteht. Am Seitenhang ist begrenzt die Horde an der Hangunterseite die Abscheideleistung. Unter diesen Bedingungen muss die Fahrgeschwindigkeit reduziert werden.
Axiale Abscheideelemente: Mähdrescher mit sehr breiten Schneidwerken werden darum mit axialen Abscheideelementen gebaut. Ein oder zwei (dann nebeneinander angeordnete) axiale Rotoren übernehmen die Aufgabe der Abscheidung. Durch die Fliehkräfte werden Korn und Stroh voneinander getrennt. Elemente aus einer Korbstruktur, die den Rotor mindestens unterhalb umschließen, verhindern, dass zu viele Nichtkornbestandteile auf die Reinigung gelangen und somit deren Funktionsfähigkeit einschränken. Bei axialen Systemen passiert das Stroh die Abscheidung rund zehnmal schneller als bei Schüttlersystemen. Daher sind größere Durchsätze möglich und vor allem bei feuchten Erntebedingungen ist der Kornverlust erheblich geringer. Axialmähdrescher sind zudem weniger anfällig gegen starke Hangneigungen, da hier die Schwerkraft weniger Bedeutung für die Abscheidung hat.

Getreide wird in aller Regel auf ebenen Flächen angebaut. Es gibt jedoch Regionen, wo auch in sanft hügeligen bis zum Teil recht steilen Topografien Druschfrüchte angebaut werden. Wie oben beschrieben, wird der Drusch- und Trennprozess in Mähdreschern sehr stark von der Topografie oder eben der Schwerkraft beeinflusst. Bereits die durch die Hangneigung einseitige Beschickung des Dreschwerkes reduziert die Leistungsfähigkeit der Maschine enorm, da nicht die ganze Dreschwerksbreite genutzt wird. Schlimmer jedoch ist die einseitige Beschickung der Reinigungsanlage (Vorbereitungsboden, Siebe) mit dem ausgedroschenen Gut. Spreu und Korn erreichen die Reinigungsanlage auf der hangabwärts liegenden Seite, darüber hinaus wird durch die Siebbewegung das Material weiter einseitig konzentriert.

Die Leistungseinbuße steigt exponentiell mit der Hangneigung. Es ist also von großem Interesse, die Hangneigung resp. diese Leistungseinbuße zu kompensieren. Dazu existieren verschiedene Systeme.
Ältestes Verfahren, das heute vor allem bei extremen Hanglagen noch immer angewandt wird, ist, dass das Fahrwerk so angehoben oder abgesenkt wird, dass die Dreschorgange waagerecht liegen. Der erste Mähdrescher mit einem Hangausgleich nach diesem Prinzip wurde 1891 von den Gebrüdern Holt in Kalifornien gebaut.[8] Der Hangausgleich musste bei früheren Maschinen mechanisch eingestellt werden, wofür eine zweite Person auf dem Mähdrescher notwendig war. Der erste automatische Hangausgleich wurde 1941 von Raymond A. Hanson entwickelt. 1945 stattete er die ersten Maschinen mit diesem System aus, bei dem der Grad der Neigung über Quecksilberschalter ermittelt wurde, und die Abscheideorgane über pneumatische Zylinder entsprechend ausgerichtet wurden.[9]

Heute geschieht der Ausgleich in der Regel mittels zweier Hydraulikzylinder, die den Mähdrescher einseitig von der Vorderachse abheben und somit waagerecht halten. Da die Hinterachse pendelnd gelagert ist, ist hier kein Neigungsausgleich erforderlich. Seltener ermöglicht eine Hubhydraulik an der Hinterachse auch einen Neigungsausgleich in Längsrichtung.

Problematisch ist hier der technische Aufwand und die damit verbundenen Kosten. Auch die Gutübergabe vom schrägen Schneidwerk auf den geraden Mähdrescher ist problematisch. Dieses System bietet jedoch den Vorteil, dass das komplette Fahrzeug mit Ausnahme des Schneidwerks in der Waagerechten gehalten wird. Somit wird die Leistung der Reinigungsorgane nicht durch die Seitenlage beeinträchtigt. Auch kann so das Volumen des Korntanks voll ausgenutzt werden, was nicht möglich ist, wenn das Fahrzeug zur Seite geneigt ist, da das Erntegut zu dieser Seite verrutschen würde, was in extremen Fällen sogar ein Umkippen des Fahrzeugs zur Folge haben kann. Darüber hinaus erhöht sich der Fahrkomfort, da auch der Fahrer in einer geraden Sitzposition verbleibt, und nicht aus dem Sitz zu rutschen droht.

Die in den letzten Jahren in vielen Bereichen stattfindende Unternehmenskonzentration ist auch auf dem Agrar-Sektor zu beobachten. Bei Mähdreschern tragen zusätzlich die hohen technologischen Anforderungen sowie die kapitalintensive Produktion dazu bei, dass viele früher eigenständige Unternehmen heute in einem Dachkonzern vereinigt sind. Dabei werden etablierte Markennamen teilweise nebeneinander beibehalten oder – etwa regional oder im Produktspektrum – differenziert. Während weniger bekannte oder angesehene Marken aufgegeben werden, können Unternehmen mit hochwertigem Image bisher nicht vorhandene Produktlinien unter eigenem Namen von Konzernschwestern übernehmen.

John Deere ist Weltmarktführer bei Landmaschinen.
Claas ist europäischer Marktführer für Mähdrescher.
Im CNH Global-Konzern, weltweit an zweiter Stelle der Landmaschinenproduzenten, ging unter anderem die DDR-Marke Fortschritt auf, heutige Marken sind
Case IH und
New Holland.
Die 1990 entstandene AGCO (Allis-Gleaner Corporation) vereinigte einige bekannte Marken:
Gleaner war von Beginn an der Markenname für Erntemaschinen.
Massey Ferguson wurde 1994 übernommen.
Fendt kam 1997 zum Konzern und bietet seit 1999 Mähdrescher unter eigenem Namen an.
Laverda ist seit 2010 im hundertprozentigen Konzernbesitz.
Deutz-Fahr ist das Nachfolgeunternehmen des ersten deutschen Produzenten.
Rostselmasch ist ein russischer Hersteller von u.a. Mähdreschern.
Sampo Rosenlew ist ein finnischer Hersteller von u.a. Mähdreschern.
Parzellendrescher für das Versuchswesen stellen die Firmen Zürn Harvesting [10] und Wintersteiger her.

The combine harvester, or simply combine, is a machine that harvests grain crops. The name derives from its combining three separate operations comprising harvesting—reaping, threshing, and winnowing—into a single process. Among the crops harvested with a combine are wheat, oats, rye, barley, corn (maize), soybeans and flax (linseed). The waste straw left behind on the field is the remaining dried stems and leaves of the crop with limited nutrients which is either chopped and spread on the field or baled for feed and bedding for livestock.

Combine harvesters are one of the most economically important labor saving inventions, enabling a small fraction of the population to be engaged in agriculture.

Scottish inventor Patrick Bell invented the reaper in 1826. The combine was invented in the United States by Hiram Moore in 1834, and early versions were pulled by horse or mule teams.[2] In 1835, Moore built a full-scale version and by 1839, over 50 acres of crops were harvested.[3] By 1860, combine harvesters with a cutting width of several metres were used on American farms.[4] In 1882, the Australian Hugh Victor McKay had a similar idea and developed the first commercial combine harvester in 1885, the Sunshine Harvester.[5]

Combines, some of them quite large, were drawn by mule or horse teams and used a bullwheel to provide power. Later, steam power was used, and George Stockton Berry integrated the combine with a steam engine using straw to heat the boiler.[6]Tractor-drawn, combines became common after World War II as many farms began to use tractors. These combines used a shaker to separate the grain from the chaff and straw-walkers (grates with small teeth on an eccentric shaft) to eject the straw while retaining the grain. Early tractor-drawn combines were usually powered by a separate gasoline engine, while later models were PTO-powered. These machines either put the harvested crop into bags that were then loaded onto a wagon or truck, or had a small bin that stored the grain until it was transferred to a truck or wagon with an auger.

In the U.S., Allis-Chalmers, Massey-Harris, International Harvester, Gleaner Manufacturing Company, John Deere, and Minneapolis Moline are past or present major combine producers.

In 1911, the Holt Manufacturing Company of California produced a self-propelled harvester.[7] In Australia in 1923, the patented Sunshine Auto Header was one of the first center-feeding self-propelled harvesters.[8] In 1923 in Kansas, the Curtis brothers and their Gleaner Manufacturing Company patented a self-propelled harvester which included several other modern improvements in grain handling.[9] Both the Gleaner and the Sunshine used Fordson engines. In 1929 Alfredo Rotania of Argentina patented a self-propelled harvester.[10] In 1937, the Australian-born Thomas Carroll, working for Massey-Harris in Canada, perfected a self-propelled model and in 1940 a lighter-weight model began to be marketed widely by the company.[11] Lyle Yost invented an auger that would lift grain out of a combine in 1947, making unloading grain much easier.[12]

In 1952 Claeys launched the first self- propelled combine harvester in Europe;[13] in 1953, the European manufacturer CLAAS developed a self-propelled combine harvester named ‘Herkules’, it could harvest up to 5 tons of wheat a day.[14] This newer kind of combine is still in use and is powered by diesel or gasoline engines. Until the self-cleaning rotary screen was invented in the mid-1960s combine engines suffered from overheating as the chaff spewed out when harvesting small grains would clog radiators, blocking the airflow needed for cooling.

A significant advance in the design of combines was the rotary design. The grain is initially stripped from the stalk by passing along a helical rotor instead of passing between rasp bars on the outside of a cylinder and a concave. Rotary combines were first introduced by Sperry-New Holland in 1975.[15]

In about the 1980s on-board electronics were introduced to measure threshing efficiency. This new instrumentation allowed operators to get better grain yields by optimizing ground speed and other operating parameters.

Combines are equipped with removable heads that are designed for particular crops. The standard header, sometimes called a grain platform, is equipped with a reciprocating knife cutter bar, and features a revolving reel with metal or plastic teeth to cause the cut crop to fall into the auger once it is cut. A variation of the platform, a "flex" platform, is similar but has a cutter bar that can flex over contours and ridges to cut soybeans that have pods close to the ground. A flex head can cut soybeans as well as cereal crops, while a rigid platform is generally used only in cereal grains.

Some wheat headers, called "draper" headers, use a fabric or rubber apron instead of a cross auger. Draper headers allow faster feeding than cross augers, leading to higher throughputs due to lower power requirements. On many farms, platform headers are used to cut wheat, instead of separate wheat headers, so as to reduce overall costs.

Dummy heads or pick-up headers feature spring-tined pickups, usually attached to a heavy rubber belt. They are used for crops that have already been cut and placed in windrows or swaths. This is particularly useful in northern climates such as western Canada where swathing kills weeds resulting in a faster dry down.

While a grain platform can be used for corn, a specialized corn head is ordinarily used instead. The corn head is equipped with snap rolls that strip the stalk and leaf away from the ear, so that only the ear (and husk) enter the throat. This improves efficiency dramatically since so much less material must go through the cylinder. The corn head can be recognized by the presence of points between each row.

Occasionally rowcrop heads are seen that function like a grain platform, but have points between rows like a corn head. These are used to reduce the amount of weed seed picked up when harvesting small grains.

Self-propelled Gleaner combines could be fitted with special tracks instead of tires or tires with tread measuring almost 10in deep to assist in harvesting rice. Some combines, particularly pull type, have tires with a diamond tread which prevents sinking in mud. These tracks can fit other combines by having adapter plates made.

The cut crop is carried up the feeder throat (commonly called the "feederhouse") by a chain and flight elevator, then fed into the threshing mechanism of the combine, consisting of a rotating threshing drum (commonly called the "cylinder"), to which grooved steel bars (rasp bars) are bolted. The rasp bars thresh or separate the grains and chaff from the straw through the action of the cylinder against the concave, a shaped "half drum", also fitted with steel bars and a meshed grill, through which grain, chaff and smaller debris may fall, whereas the straw, being too long, is carried through onto the straw walkers. This action is also allowed due to the fact that the grain is heavier than the straw, which causes it to fall rather than "float" across from the cylinder/concave to the walkers. The drum speed is variably adjustable on most machines, whilst the distance between the drum and concave is finely adjustable fore, aft and together, to achieve optimum separation and output. Manually engaged disawning plates are usually fitted to the concave. These provide extra friction to remove the awns from barley crops. After the primary separation at the cylinder, the clean grain falls through the concave and to the shoe, which contains the chaffer and sieves. The shoe is common to both conventional combines and rotary combines.

In the Palouse region of the Pacific Northwest of the United States the combine is retrofitted with a hydraulic hillside leveling system. This allows the combine to harvest the steep but fertile soil in the region. Hillsides can be as steep as a 50% slope. Gleaner, IH and Case IH, John Deere, and others all have made combines with this hillside leveling system, and local machine shops have fabricated them as an aftermarket add-on.

The first leveling technology was developed by Holt Co., a California firm, in 1891.[16] Modern leveling came into being with the invention and patent of a level sensitive mercury switch system invented by Raymond Alvah Hanson in 1946.[17] Raymond’s son, Raymond, Jr., produced leveling systems exclusively for John Deere combines until 1995 as R. A. Hanson Company, Inc. In 1995, his son, Richard, purchased the company from his father and renamed it RAHCO International, Inc. In March 2011, the company was renamed Hanson Worldwide, LLC.[18] Production continues to this day.

Hillside leveling has several advantages. Primary among them is an increased threshing efficiency on hillsides. Without leveling, grain and chaff slide to one side of separator and come through the machine in a large ball rather than being separated, dumping large amounts of grain on the ground. By keeping the machinery level, the straw-walker is able to operate more efficiently, making for more efficient threshing. IH produced the 453 combine which leveled both side-to-side and front-to-back, enabling efficient threshing whether on a hillside or climbing a hill head on.

Secondarily, leveling changes a combine’s center of gravity relative to the hill and allows the combine to harvest along the contour of a hill without tipping, a very real danger on the steeper slopes of the region; it is not uncommon for combines to roll on extremely steep hills.

Newer leveling systems do not have as much tilt as the older ones. A John Deere 9600 combine equipped with a Rahco hillside conversion kit will level over to 44%, while the newer STS combines will only go to 35%. These modern combines use the rotary grain separator which makes leveling less critical. Most combines on the Palouse have dual drive wheels on each side to stabilize them.

A leveling system was developed in Europe by the Italian combine manufacturer Laverda which still produces it today.

Sidehill combines are very similar to hillside combines in that they level the combine to the ground so that the threshing can be efficiently conducted; however, they have some very distinct differences. Modern hillside combines level around 35% on average, older machines were closer to 50%. Sidehill combines only level to 18%. They are sparsely used in the Palouse region. Rather, they are used on the gentle rolling slopes of the mid-west. Sidehill combines are much more mass-produced than their hillside counterparts. The height of a sidehill machine is the same height as a level-land combine. Hillside combines have added steel that sets them up approximately 2–5 feet higher than a level-land combine and provide a smooth ride.
Another technology that is sometimes used on combines is a continuously variable transmission. This allows the ground speed of the machine to be varied while maintaining a constant engine and threshing speed. It is desirable to keep the threshing speed constant since the machine will typically have been adjusted to operate best at a certain speed.

Self-propelled combines started with standard manual transmissions that provided one speed based on input rpm. Deficiencies were noted and in the early 1950s combines were equipped with what John Deere called the "Variable Speed Drive". This was simply a variable width sheave controlled by spring and hydraulic pressures. This sheave was attached to the input shaft of the transmission. A standard 4 speed manual transmission was still used in this drive system. The operator would select a gear, typically 3rd. An extra control was provided to the operator to allow him to speed up and slow down the machine within the limits provided by the variable speed drive system. By decreasing the width of the sheave on the input shaft of the transmission, the belt would ride higher in the groove. This slowed the rotating speed on the input shaft of the transmission, thus slowing the ground speed for that gear. A clutch was still provided to allow the operator to stop the machine and change transmission gears.

Later, as hydraulic technology improved, hydrostatic transmissions were introduced by Versatile Mfg for use on swathers but later this technology was applied to combines as well. This drive retained the 4 speed manual transmission as before, but this time used a system of hydraulic pumps and motors to drive the input shaft of the transmission. This system is called a Hydrostatic drive system. The engine turns the hydraulic pump capable of pressures up to 4,000 psi (30 MPa). This pressure is then directed to the hydraulic motor that is connected to the input shaft of the transmission. The operator is provided with a lever in the cab that allows for the control of the hydraulic motor’s ability to use the energy provided by the pump. By adjusting the swash plate in the motor, the stroke of its pistons are changed. If the swash plate is set to neutral, the pistons do not move in their bores and no rotation is allowed, thus the machine does not move. By moving the lever, the swash plate moves its attached pistons forward, thus allowing them to move within the bore and causing the motor to turn. This provides an infinitely variable speed control from 0 ground speed to what ever the maximum speed is allowed by the gear selection of the transmission. The standard clutch was removed from this drive system as it was no longer needed.

Most if not all modern combines are equipped with hydrostatic drives. These are larger versions of the same system used in consumer and commercial lawn mowers that most are familiar with today. In fact, it was the downsizing of the combine drive system that placed these drive systems into mowers and other machines.

Despite great advances mechanically and in computer control, the basic operation of the combine harvester has remained unchanged almost since it was invented.

First, the header, described above, cuts the crop and feeds it into the threshing cylinder. This consists of a series of horizontal rasp bars fixed across the path of the crop and in the shape of a quarter cylinder. Moving rasp bars or rub bars pull the crop through concaved grates that separate the grain and chaff from the straw. The grain heads fall through the fixed concaves. What happens next is dependent on the type of combine in question. In most modern combines, the grain is transported to the shoe by a set of 2, 3, or 4 (possibly more on the largest machines) augers, set parallel or semi-parallel to the rotor on axial mounted rotors and perpendicular Flow" combines.) In older Gleaner machines, these augers were not present. These combines are unique in that the cylinder and concave is set inside feederhouse instead of in the machine directly behind the feederhouse. Consequently, the material was moved by a "raddle chain" from underneath the concave to the walkers. The clean grain fell between the raddle and the walkers onto the shoe, while the straw, being longer and lighter, floated across onto the walkers to be expelled. On most other older machines, the cylinder was placed higher and farther back in the machine, and the grain moved to the shoe by falling down a "clean grain pan", and the straw "floated" across the concaves to the back of the walkers.

Since the Sperry-New Holland TR70 Twin-Rotor Combine came out in 1975, most manufacturers have combines with rotors in place of conventional cylinders. However, makers have now returned to the market with conventional models alongside their rotary line-up. A rotor is a long, longitudinally mounted rotating cylinder with plates similar to rub bars (except for in the above mentioned Gleaner rotaries).

There are usually two sieves, one above the other. The sieves and basically a metal frame, that has many rows of "fingers" set reasonably close together. The angle of the fingers is adjustable as to change the clearance and control the size of material passing through. The top is set with more clearance than the bottom as to allow a gradual cleaning action. Setting the concave clearance, fan speed, and sieve size is critical to ensure that the crop is threshed properly, the grain is clean of debris, and that all of the grain entering the machine reaches the grain tank or ‘hopper’. ( Observe, for example, that when travelling uphill the fan speed must be reduced to account for the shallower gradient of the sieves.)

Heavy material, e.g., unthreshed heads, fall off the front of the sieves and are returned to the concave for re-threshing.

The straw walkers are located above the sieves, and also have holes in them. Any grain remaining attached to the straw is shaken off and falls onto the top sieve.

When the straw reaches the end of the walkers it falls out the rear of the combine. It can then be baled for cattle bedding or spread by two rotating straw spreaders with rubber arms. Most modern combines are equipped with a straw spreader.

For some time, combine harvesters used the conventional design, which used a rotating cylinder at the front-end which knocked the seeds out of the heads, and then used the rest of the machine to separate the straw from the chaff, and the chaff from the grain. The TR70 from Sperry-New Holland was brought out in 1975 as the first rotary combine. Other manufacturers soon followed, IH with their ‘Axial Flow’ in 1977 and Gleaner with their N6 in 1979.

In the decades before the widespread adoption of the rotary combine in the late seventies, several inventors had pioneered designs which relied more on centrifugal force for grain separation and less on gravity alone. By the early eighties, most major manufacturers had settled on a "walkerless" design with much larger threshing cylinders to do most of the work. Advantages were faster grain harvesting and gentler treatment of fragile seeds, which were often cracked by the faster rotational speeds of conventional combine threshing cylinders.

It was the disadvantages of the rotary combine (increased power requirements and over-pulverization of the straw by-product) which prompted a resurgence of conventional combines in the late nineties. Perhaps overlooked but nonetheless true, when the large engines that powered the rotary machines were employed in conventional machines, the two types of machines delivered similar production capacities. Also, research was beginning to show that incorporating above-ground crop residue (straw) into the soil is less useful for rebuilding soil fertility than previously believed. This meant that working pulverized straw into the soil became more of a hindrance than a benefit. An increase in feedlot beef production also created a higher demand for straw as fodder. Conventional combines, which use straw walkers, preserve the quality of straw and allow it to be baled and removed from the field.

Grain combine fires are responsible for millions of dollars of loss each year. Fires usually start near the engine where dust and dry crop debris accumulate.[19] From 1984 to 2000, 695 major grain combine fires were reported to local fire departments.[20] Dragging chains to reduce static electricity was one method employed for preventing harvester fires, but the role of static electricity linked to causing harvester fires is yet to be established.

Posted by !!! Painting with Light !!! #schauer on 2014-08-07 06:49:19

Tagged: , Schauer , Christian , Oberdiendorf , Thyrnau , Passau , Hauzenberg , Bayern , Bavaria , Deutschland , Germany , Ernte , Harvest , Harvester , Bauer , Farmer , Landwirt , Natur , Nature , Old , Alt , Nostalgie , Denim , Retro , Vintage , Farm , Bauernhof , Strom , Reifen , Wheel , Stahl , Steel , Outdoor , München , Munich , Deutz , Fahr , John , Deere , Landwirtschaft , Öko , Ökologie , Messer , Knife , Stroh , agricultor , agriculteur , Fahrzeug , Vehicle , Vehículo , véhicule , Mähdrescher , Traktor , Bulldog , tracteur , Tractor , agriculture , agricultura , récolte , cosecha , Kuh , Cow , Landschaft , Landscape , Feld , Field , Korn , Corn , Mais , driver , fahrer , Pussy , Paining , with , Light , Gras